Testing the Wind Energy Data Based on Environmental Factors Predicted by Machine Learning with Analysis of Variance
dc.contributor.author | Atalan, Yasemin Ayaz | |
dc.contributor.author | Atalan, Abdulkadir | |
dc.date.accessioned | 2025-01-27T21:19:48Z | |
dc.date.available | 2025-01-27T21:19:48Z | |
dc.date.issued | 2025 | |
dc.department | Çanakkale Onsekiz Mart Üniversitesi | |
dc.description.abstract | This study proposes a two-stage methodology for predicting wind energy production using time, environmental, technical, and locational variables. In the first stage, machine learning algorithms, including random forest (RF), gradient boosting (GB), k-nearest neighbors (kNNs), linear regression (LR), and decision trees (Tree), were employed to estimate energy output. Among these, RF exhibited the best performance with the lowest error metrics (MSE: 0.003, RMSE: 0.053) and the highest R-2 value (0.988). In the second stage, analysis of variance (ANOVA) was conducted to evaluate the statistical relationships between independent variables and the predicted dependent variable, identifying wind speed (p < 0.001) and rotor speed (p < 0.001) as the most influential factors. Furthermore, RF and GB models produced predictions most closely aligned with actual data, achieving R-2 values of 88.83% and 89.30% in the ANOVA validation phase. Integrating RF and GB models with statistical validation highlighted the robustness of the methodology. These findings demonstrate the robustness of integrating machine learning models with statistical verification methods. | |
dc.identifier.doi | 10.3390/app15010241 | |
dc.identifier.issn | 2076-3417 | |
dc.identifier.issue | 1 | |
dc.identifier.scopus | 2-s2.0-85214520699 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.uri | https://doi.org/10.3390/app15010241 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12428/28737 | |
dc.identifier.volume | 15 | |
dc.identifier.wos | WOS:001394871400001 | |
dc.identifier.wosquality | N/A | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.language.iso | en | |
dc.publisher | Mdpi | |
dc.relation.ispartof | Applied Sciences-Basel | |
dc.relation.publicationcategory | info:eu-repo/semantics/openAccess | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.snmz | KA_WoS_20250125 | |
dc.subject | wind energy prediction | |
dc.subject | renewable energy | |
dc.subject | machine learning | |
dc.subject | ANOVA | |
dc.subject | statistical validation | |
dc.title | Testing the Wind Energy Data Based on Environmental Factors Predicted by Machine Learning with Analysis of Variance | |
dc.type | Article |