Synthesis and characterization of substituted poly(naphthalene)s with imine bonding containing thiophene unit

dc.authoridKaya, Ismet/0000-0002-9813-2962
dc.contributor.authorSenol, Dilek
dc.contributor.authorKaya, İsmet
dc.date.accessioned2025-01-27T20:27:26Z
dc.date.available2025-01-27T20:27:26Z
dc.date.issued2019
dc.departmentÇanakkale Onsekiz Mart Üniversitesi
dc.description.abstractIn this study, 5-(4H-dithieno[3,2-b:2',3'-d]pyrrol-4-yl)naphthalen-1-amine was synthesized from the required reaction conditions of 3,3'-dibromo-2,2'-bithiophene with 1,5-diamine naphthalene. Then, Schiff base monomers were synthesized from the condensation reactions of 5-(4H-dithieno [3,2-b:2',3'-d]pyrrol-4-yl)naphthalen-1-amine with mono aldehydes such as 2-hydroxybenzaldehyde, 4-hydroxybenzaldehyde and isovaniline. The Schiff base monomers were polymerized via oxidative polycondensation in 0.1 M KOH aqueous solution at 90 degrees C by 10-15% NaOCl oxidant. The structures of synthesized compounds were carried out by FT-IR, UV-Vis, H-1 NMR, C-13 NMR techniques. Further characterization was implemented by cyclic voltammetry (CV) electrochemical properties, fluorescence (FL) measurements, electrical properties, thermogravimetric-differential thermal analysis (TG-DTA) and differential scanning calorimetry (DSC) measurements. Depending on structural changes of synthesized polymers, differences were observed for the optical, electrochemical, thermal and physical properties. The optical and electrochemical band gaps, conductivity and fluorescence properties of P1 were found to be better than other polymers. The fluorescence intensity of P1 in two different wavelengths was found to be 632 a. u. and 1000 a.u. The optical (E-g) and electrochemical band gap values (E'(g)) of P1 were found to be 2.34 and 2.25 eV, respectively. This low band gap values have demonstrated to be a good conjugation in the structure. According to TG measurements, T-on temperature of P1, P2 and P3 were found to be 227, 293 and 306 degrees C, respectively. The weight average molecular weight (Mw) of P1, P2 and P3 were calculated to be 39500, 40150 and 44300 Da, respectively.
dc.description.sponsorshipCanakkale Onsekiz Mart University scientific research project commission [FBA-2017-1168]
dc.description.sponsorshipThe authors thank Canakkale Onsekiz Mart University scientific research project commission for support with the project number (Project Nu.: FBA-2017-1168).
dc.identifier.doi10.1016/j.matchemphys.2019.121876
dc.identifier.issn0254-0584
dc.identifier.issn1879-3312
dc.identifier.scopus2-s2.0-85068895964
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.matchemphys.2019.121876
dc.identifier.urihttps://hdl.handle.net/20.500.12428/22688
dc.identifier.volume237
dc.identifier.wosWOS:000489066200041
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherElsevier Science Sa
dc.relation.ispartofMaterials Chemistry and Physics
dc.relation.publicationcategoryinfo:eu-repo/semantics/openAccess
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20250125
dc.subjectSchiff base polymers
dc.subjectPolyphenols
dc.subjectOxidative polycondensation
dc.subjectThermal analysis
dc.subjectFluorescence
dc.titleSynthesis and characterization of substituted poly(naphthalene)s with imine bonding containing thiophene unit
dc.typeArticle

Dosyalar