Polymeric Composites Based on Carboxymethyl Cellulose Cryogel and Conductive Polymers: Synthesis and Characterization

Yükleniyor...
Küçük Resim

Tarih

2020

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Mdpi

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

In this study, a super porous polymeric network prepared from a natural polymer, carboxymethyl cellulose (CMC), was used as a scaffold in the preparation of conductive polymers such as poly(Aniline) (PANi), poly(Pyrrole) (PPy), and poly(Thiophene) (PTh). CMC-conductive polymer composites were characterized by Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA) techniques, and conductivity measurements. The highest conductivity was observed as 4.36 x 10(-4) +/- 4.63 x 10(-5) S.cm(-1) for CMC-PANi cryogel composite. The changes in conductivity of prepared CMC cryogel and its corresponding PAN, PPy, and PTh composites were tested against HCl and NH3 vapor. The changes in conductivity values of CMC cryogel upon HCl and NH3 vapor treatment were found to increase 1.5- and 2-fold, respectively, whereas CMC-PANi composites showed a 143-fold increase in conductivity upon HCl and a 12-fold decrease in conductivity upon NH3 treatment, suggesting the use of natural polymer-conductive polymer composites as sensor for these gases.

Açıklama

Anahtar Kelimeler

CMC cryogel, natural polymer-conductive polymer cryogel composite, carboxymethyl cellulose cryogel composites, conductive natural polymer cryogel

Kaynak

Journal of Composites Science

WoS Q Değeri

N/A

Scopus Q Değeri

Q1

Cilt

4

Sayı

2

Künye