Harmonic curvatures and generalized helices in En

dc.authoridKula, Levent/0000-0002-8208-9728
dc.contributor.authorCamci, Cetin
dc.contributor.authorIlarslan, Kazim
dc.contributor.authorKula, Levent
dc.contributor.authorHacisalihoglu, H. Hilmi
dc.date.accessioned2025-01-27T20:29:51Z
dc.date.available2025-01-27T20:29:51Z
dc.date.issued2009
dc.departmentÇanakkale Onsekiz Mart Üniversitesi
dc.description.abstractIn n-dimensional Euclidean space E-n, harmonic curvatures of a non-degenerate curve defined by Ozdamar and Haci-salihoglu [Ozdamar E, Hacisalihoglu HH. A characterization of Inclined curves in Euclidean n-space. Comm Fac Sci Univ Ankara, Ser A 1 1975;24:15-23]. In this paper, we give some characterizations for a non-degenerate curve alpha to be a generalized helix by using its harmonic curvatures. Also we define the generalized Darboux vector D of a non-degenerate curve alpha in n-dimensional Euclidean space E-n and we show that the generalized Darboux vector D lies in the kernel of Frenet matrix M(s) if and only if the curve a is a generalized helix in the sense of Hayden. (C) 2007 Elsevier Ltd. All rights reserved.
dc.identifier.doi10.1016/j.chaos.2007.11.001
dc.identifier.endpage2596
dc.identifier.issn0960-0779
dc.identifier.issue5
dc.identifier.scopus2-s2.0-67349237127
dc.identifier.scopusqualityQ1
dc.identifier.startpage2590
dc.identifier.urihttps://doi.org/10.1016/j.chaos.2007.11.001
dc.identifier.urihttps://hdl.handle.net/20.500.12428/23055
dc.identifier.volume40
dc.identifier.wosWOS:000267182400055
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherPergamon-Elsevier Science Ltd
dc.relation.ispartofChaos Solitons & Fractals
dc.relation.publicationcategoryinfo:eu-repo/semantics/openAccess
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20250125
dc.subjectFibonacci
dc.subjectSpace
dc.titleHarmonic curvatures and generalized helices in En
dc.typeArticle

Dosyalar