Effect of CaCO3 Filler Component on Solid State Decomposition Kinetic of PP/LDPE/CaCO3 Composites

dc.contributor.authorSirin, Kamil
dc.contributor.authorDoğan, Fatih
dc.contributor.authorBalcan, Mehmet
dc.contributor.authorKaya, İsmet
dc.date.accessioned2025-01-27T20:52:15Z
dc.date.available2025-01-27T20:52:15Z
dc.date.issued2009
dc.departmentÇanakkale Onsekiz Mart Üniversitesi
dc.description.abstractIn this study, the effect of addition Calcium carbonate (CaCO3) filler component on solid state thermal decomposition procedures of Polypropylene-Low Density Polyethylene (PP-LDPE; 90/10 wt%) blends involving different amounts (5, 10, 20 wt%) Calcium carbonate (CaCO3) was investigated using thermogravimetry in dynamic nitrogen atmosphere at different heating rates. An integral composite procedure involving the integral iso-conversional methods such as the Tang (TM), the Kissinger-Akahira-Sunose method (KAS), the Flynn-Wall-Ozawa (FWO), an integral method such as Coats-Redfern (CR) and master plots method were employed to determine the kinetic model and kinetic parameters of the decomposition processes under non-isothermal conditions. The Iso-conversional methods indicated that the thermal decomposition reaction should conform to single reaction model. The results of the integral composite procedures of TG data at various heating rates suggested that thermal processes of PP-LDPE-CaCO3 composites involving different amounts of CaCO3 filler component (5, 10, 20 wt%) followed a single step with approximate activation energies of 226.7, 248.9, and 252.0 kJ.mol- 1 according to the FWO method, respectively and those of 231.3, 240.1 and 243.0 kJ mol- 1 at 5 degrees C min- 1 according to the Coats-Redfern method, the reaction mechanisms of all the composites was described from the master plots methods and are Pn model for composite C-1, Rn model for composites C-2 and C-3, respectively. It was found that the thermal stability, activation energy and thermal decomposition process changed by the increasing CaCO3 filler weight in composite structure.
dc.identifier.doi10.1080/10601320903158297
dc.identifier.endpage958
dc.identifier.issn1060-1325
dc.identifier.issue10
dc.identifier.scopus2-s2.0-70349274446
dc.identifier.scopusqualityN/A
dc.identifier.startpage949
dc.identifier.urihttps://doi.org/10.1080/10601320903158297
dc.identifier.urihttps://hdl.handle.net/20.500.12428/25712
dc.identifier.volume46
dc.identifier.wosWOS:000269587300004
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherTaylor & Francis Inc
dc.relation.ispartofJournal of Macromolecular Science Part A-Pure and Applied Chemistry
dc.relation.publicationcategoryinfo:eu-repo/semantics/openAccess
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20250125
dc.subjectCaCO3
dc.subjectpolypropylene
dc.subjectlow density polyethylene
dc.subjectkinetic method
dc.subjectmechanism function
dc.titleEffect of CaCO3 Filler Component on Solid State Decomposition Kinetic of PP/LDPE/CaCO3 Composites
dc.typeArticle

Dosyalar