Mantle flow uplift of western Anatolia and the Aegean: Interpretations from geophysical analyses and geodynamic modeling
dc.authorid | KOMUT, Tolga/0000-0003-1248-9811 | |
dc.authorid | Gogus, Oguz/0000-0002-6199-303X | |
dc.contributor.author | Komut, Tolga | |
dc.contributor.author | Gray, Robert | |
dc.contributor.author | Pysklywec, Russell | |
dc.contributor.author | Gogus, Oguz H. | |
dc.date.accessioned | 2025-01-27T20:27:12Z | |
dc.date.available | 2025-01-27T20:27:12Z | |
dc.date.issued | 2012 | |
dc.department | Çanakkale Onsekiz Mart Üniversitesi | |
dc.description.abstract | The Western Anatolian and Aegean region demonstrates a complex geologic history of horizontal and vertical tectonics. Active normal faulting and exhumation zones indicate that Western Anatolia has experienced significant extension since the Oligocene-Early Miocene (similar to 30 Ma). Our geophysical analyses demonstrate that the region is also uplifted relative to an elevation that would be expected given an isostatic response to the lithosphere structure. Namely, topography residuals indicate a residual uplift of about 1500 m over similar to 200 km sections of Western Anatolia and the Aegean. Admittance functions between free-air gravity and topography indicate that the regional topography is isostatically uncompensated and as it approaches similar to 50 mGal/km at the longest wavelengths, the uncompensated topography is likely owing to an underlying mantle flow component. Using forward geodynamic modelling we consider an idealized section of Western Anatolian lithosphere based on tomographic inversions and examine the magnitude and pattern of surface topography to reconcile with the geophysical observables. The models consistently show a plateau-type uplift (and horizontal extension) through Western Anatolia with an amplitude and wavelength consistent with the residual topography calculations. Together, the geophysical analyses and modelling provide independent quantitative evidence that the thin Anatolian-Aegean lithosphere is being buoyed upwards by underlying mantle flow. The mantle flow may be associated with active lithosphere delamination beneath the region; a process that would also explain the ongoing crustal extension. | |
dc.description.sponsorship | Council of Higher Education of Turkey; Alexander Graham Bell CGS NSERC scholarship; Natural Sciences and Engineering Research Council of Canada (NSERC); (NERC) U.K. Natural Environment Research Council | |
dc.description.sponsorship | The collaboration between the authors was facilitated by a grant from the Council of Higher Education of Turkey. In addition, R.G. was funded by an Alexander Graham Bell CGS NSERC scholarship, and R.P. was funded by Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant. O.H.G. is funded by (NERC) U.K. Natural Environment Research Council. We appreciate careful and thoughtful reviews by Diane Arcay and an anonymous referee. | |
dc.identifier.doi | 10.1029/2012JB009306 | |
dc.identifier.issn | 2169-9313 | |
dc.identifier.issn | 2169-9356 | |
dc.identifier.scopus | 2-s2.0-84870572940 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.uri | https://doi.org/10.1029/2012JB009306 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12428/22619 | |
dc.identifier.volume | 117 | |
dc.identifier.wos | WOS:000311851900001 | |
dc.identifier.wosquality | N/A | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.language.iso | en | |
dc.publisher | Amer Geophysical Union | |
dc.relation.ispartof | Journal of Geophysical Research-Solid Earth | |
dc.relation.publicationcategory | info:eu-repo/semantics/openAccess | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.snmz | KA_WoS_20250125 | |
dc.subject | Effective Elastic Thickness | |
dc.subject | Crustal Structure | |
dc.subject | Continental Lithosphere | |
dc.subject | Mediterranean Region | |
dc.subject | Surrounding Regions | |
dc.subject | Isostatic Response | |
dc.subject | Menderes Massif | |
dc.subject | Hellenic Arc | |
dc.subject | Turkey | |
dc.subject | Evolution | |
dc.title | Mantle flow uplift of western Anatolia and the Aegean: Interpretations from geophysical analyses and geodynamic modeling | |
dc.type | Article |