Hydrogen Production from Chemical Hydrides via Porous Carbon Particle Composite Catalyst Embedding of Metal Nanoparticles
Tarih
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
Özet
Porous carbon particles (PCPs) prepared from sucrose via the hydrothermal method and its modified forms with polyethyleneimine (PEI) as PCP-PEI were used as templates as in situ metal nanoparticles as M@PCP and M@PCP-PEI (M:Co, Ni, or Cu), respectively. The prepared M@PCP and M@PCP-PEI composites were used as catalysts in the hydrolysis of NaBH4 and NH3BH3 to produce hydrogen (H2). The amount of Co nanoparticles within the Co@PCP-PEI structure was steadily increased via multiple loading/reducing cycles, e.g., from 29.8 +/- 1.1 mg/g at the first loading/reducing cycles to 44.3 +/- 4.9 mg/g after the third loading/reducing cycles. The Co@PCP-PEI catalyzed the hydrolysis of NaBH4 within 120 min with 251 +/- 1 mL H2 production and a 100% conversion ratio with a 3.8 +/- 0.3 mol H2/(mmol catmin) turn-over frequency (TOF) and a lower activation energy (Ea), 29.3 kJ/mol. In addition, the Co@PCP-PEI-catalyzed hydrolysis of NH3BH3 was completed in 28 min with 181 +/- 1 mL H2 production at 100% conversion with a 4.8 +/- 0.3 mol H2/(mmol catmin) TOF value and an Ea value of 32.5 kJ/mol. Moreover, Co@PCP-PEI composite catalysts were afforded 100% activity up to 7 and 5 consecutive uses in NaBH4 and NH3B3 hydrolysis reactions, respectively, with all displaying 100% conversions for both hydrolysis reactions in the 10 successive uses of the catalyst.