Xenogenic Neural Stem Cell-Derived Extracellular Nanovesicles Modulate Human Mesenchymal Stem Cell Fate and Reconstruct Metabolomic Structure

dc.authoridEylem, Cemil Can/0000-0002-3353-2869
dc.authoridIsik, Melis/0000-0003-1101-7548
dc.authoridOkesola, Babatunde/0000-0003-0392-9205
dc.authoridDerkus, Burak/0000-0001-5558-0995
dc.authoridAkkulak, Merve/0000-0003-2834-7682
dc.authoridARSLAN, Yavuz Emre/0000-0003-3445-1814
dc.contributor.authorDerkus, Burak
dc.contributor.authorIsik, Melis
dc.contributor.authorEylem, Cemil Can
dc.contributor.authorErgin, Irem
dc.contributor.authorCamci, Can Berk
dc.contributor.authorBilgin, Sila
dc.contributor.authorElbuken, Caglar
dc.date.accessioned2025-01-27T20:43:59Z
dc.date.available2025-01-27T20:43:59Z
dc.date.issued2022
dc.departmentÇanakkale Onsekiz Mart Üniversitesi
dc.description.abstractExtracellular nanovesicles, particularly exosomes, can deliver their diverse bioactive biomolecular content, including miRNAs, proteins, and lipids, thus providing a context for investigating the capability of exosomes to induce stem cells toward lineage-specific cells and tissue regeneration. In this study, it is demonstrated that rat subventricular zone neural stem cell-derived exosomes (rSVZ-NSCExo) can control neural-lineage specification of human mesenchymal stem cells (hMSCs). Microarray analysis shows that the miRNA content of rSVZ-NSCExo is a faithful representation of rSVZ tissue. Through immunocytochemistry, gene expression, and multi-omics analyses, the capability to use rSVZ-NSCExo to induce hMSCs into a neuroglial or neural stem cell phenotype and genotype in a temporal and dose-dependent manner via multiple signaling pathways is demonstrated. The current study presents a new and innovative strategy to modulate hMSCs fate by harnessing the molecular content of exosomes, thus suggesting future opportunities for rSVZ-NSCExo in nerve tissue regeneration.
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TUBITAK) [116S476]
dc.description.sponsorshipThis work was financially supported by the Scientific and Technological Research Council of Turkey (TUBITAK) with the grant number 116S476.
dc.identifier.doi10.1002/adbi.202101317
dc.identifier.issn2701-0198
dc.identifier.issue6
dc.identifier.pmid35347890
dc.identifier.scopus2-s2.0-85127254858
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1002/adbi.202101317
dc.identifier.urihttps://hdl.handle.net/20.500.12428/24444
dc.identifier.volume6
dc.identifier.wosWOS:000773739500001
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.indekslendigikaynakPubMed
dc.language.isoen
dc.publisherWiley-V C H Verlag Gmbh
dc.relation.ispartofAdvanced Biology
dc.relation.publicationcategoryinfo:eu-repo/semantics/openAccess
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WoS_20250125
dc.subjectexosomes
dc.subjectextracellular vesicles
dc.subjectmesenchymal stem cells
dc.subjectmetabolomics
dc.subjectneural differentiation
dc.subjectneural stem cells
dc.subjectsubventricular zone
dc.titleXenogenic Neural Stem Cell-Derived Extracellular Nanovesicles Modulate Human Mesenchymal Stem Cell Fate and Reconstruct Metabolomic Structure
dc.typeArticle

Dosyalar