CNT-PAN hybrid nanofibrous mat interleaved carbon/epoxy laminates with improved Mode I interlaminar fracture toughness

dc.authoridYar, Adem/0000-0002-1432-9590
dc.authoridESKIZEYBEK, VOLKAN/0000-0002-5373-0379
dc.contributor.authorEskizeybek, Volkan
dc.contributor.authorYar, Adem
dc.contributor.authorAvci, Ahmet
dc.date.accessioned2025-01-27T20:29:51Z
dc.date.available2025-01-27T20:29:51Z
dc.date.issued2018
dc.departmentÇanakkale Onsekiz Mart Üniversitesi
dc.description.abstractInterleaving laminated composites with electrospun nanofibrous mats comes out as a promising micro scale strategy to strengthen interlaminar regions of laminated composites. The aim of this study is to evaluate the synergetic contribution of nano- and micro-scale mechanisms on interlaminar delamination. For this, carbon nanotubes (CNTs) reinforced polyacrylonitrile (PAN) electrospun hybrid mats were successfully fabricated and utilized as interleaves within the interlaminar region of carbon/epoxy laminated composites. The Mode I interlaminar fracture toughness values were enhanced up to 77% by introducing CNTPAN nanofibrous interleaves. Specifically, the nano-scale toughening mechanisms such as CNTs bridging, CNTs pull-out, and sword-sheath increased the Mode I fracture toughness by 45% with respect to neat PAN nanofibrous interleaves. The related micro- and nano-scale toughening mechanisms were evaluated based on the fracture surface analysis. Atomic force microscopy was also utilized to quantify the magnitude of surface roughness changes on the interlaminar region with respect to multi scale interleaving reinforcement and correlate surface roughness changes due to crack deflection to increased fracture toughness. (C) 2018 Elsevier Ltd. All rights reserved.
dc.description.sponsorshipState Planning Organization (DPT) [DPT2003K120390]; Selcuk University Scientific Research Council (BAP Project) [15101009]
dc.description.sponsorshipThe authors would like to thank State Planning Organization (DPT) under project number DPT2003K120390 and Selcuk University Scientific Research Council (BAP Project No. 15101009) for their financial support. Technical support from the Selcuk University Advanced Technology Research and Application Center is much appreciated.
dc.identifier.doi10.1016/j.compscitech.2018.01.021
dc.identifier.endpage39
dc.identifier.issn0266-3538
dc.identifier.issn1879-1050
dc.identifier.scopus2-s2.0-85041385117
dc.identifier.scopusqualityQ1
dc.identifier.startpage30
dc.identifier.urihttps://doi.org/10.1016/j.compscitech.2018.01.021
dc.identifier.urihttps://hdl.handle.net/20.500.12428/23052
dc.identifier.volume157
dc.identifier.wosWOS:000427341200004
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherElsevier Sci Ltd
dc.relation.ispartofComposites Science and Technology
dc.relation.publicationcategoryinfo:eu-repo/semantics/openAccess
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20250125
dc.subjectCarbon fibers
dc.subjectCarbon nanotube
dc.subjectDelamination
dc.subjectFracture toughness
dc.subjectElectrospinning
dc.titleCNT-PAN hybrid nanofibrous mat interleaved carbon/epoxy laminates with improved Mode I interlaminar fracture toughness
dc.typeArticle

Dosyalar