Cryogel composites based on hyaluronic acid and halloysite nanotubes as scaffold for tissue engineering

dc.authoridYetiskin, Berkant/0000-0002-8696-6548
dc.authoridOkay, Oguz/0000-0003-2717-4150
dc.authoridNaumenko, Ekaterina/0000-0001-7388-7958
dc.authoridDemirci, Şahin/0000-0001-7083-1481
dc.authoridFakhrullin, Rawil/0000-0003-2015-7649
dc.contributor.authorSuner, Selin S.
dc.contributor.authorDemirci, Şahin
dc.contributor.authorYetiskin, Berkant
dc.contributor.authorFakhrullin, Rawil
dc.contributor.authorNaumenko, Ekaterina
dc.contributor.authorOkay, Oguz
dc.contributor.authorAyyala, Ramesh S.
dc.date.accessioned2025-01-27T20:20:17Z
dc.date.available2025-01-27T20:20:17Z
dc.date.issued2019
dc.departmentÇanakkale Onsekiz Mart Üniversitesi
dc.description.abstractWe present here preparation of mechanically strong and biocompatible cryogel composites based on hyaluronic acid (HA) and halloysite nanotubes (HNTs) of various compositions, and their applications as scaffold for different cell growing media. Uniaxial compression tests reveal that the incorporation of HNTs into HA cryogels leads to a similar to 2.5-fold increase in their Young moduli, e.g., from 38 +/- 1 to 99 +/- 4 kPa at a HA:HNTs weight ratio of 1:2. Although HA:HNTs based cryogels were found to be blood compatible with 1.37 +/- 0.11% hemolysis ratio at a HA:HNTs weight ratio of 1:2, they trigger thrombogenic activity with a blood clotting index of 17.3 +/- 4.8. Remarkably, HA:HNTs cryogel composites were found to be excellent scaffold materials in the proliferation of rat mesenchymal stem cells (MSC), human cervical carcinoma cells (HeLa), and human colon cancer cells (HCT116). The cell studies revealed that an increased amount of HNT embedding into HA cryogels leads to an increase of MSC proliferation. (C) Elsevier B.V. All rights reserved.
dc.description.sponsorshipRFBR [18-29-11031-mk]; [16.2822.2017/4.6]
dc.description.sponsorshipThe work was performed within the Russian Government Program of Competitive Growth of Kazan Federal University. It was funded by RFBR grant 18-29-11031-mk and by the subsidy allocated to Kazan Federal University for the state assignment in scientific activities (#16.2822.2017/4.6).
dc.identifier.doi10.1016/j.ijbiomac.2019.03.025
dc.identifier.endpage635
dc.identifier.issn0141-8130
dc.identifier.issn1879-0003
dc.identifier.pmid30840861
dc.identifier.scopus2-s2.0-85062426548
dc.identifier.scopusqualityQ1
dc.identifier.startpage627
dc.identifier.urihttps://doi.org/10.1016/j.ijbiomac.2019.03.025
dc.identifier.urihttps://hdl.handle.net/20.500.12428/21651
dc.identifier.volume130
dc.identifier.wosWOS:000466253000066
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.indekslendigikaynakPubMed
dc.language.isoen
dc.publisherElsevier Science Bv
dc.relation.ispartofInternational Journal of Biological Macromolecules
dc.relation.publicationcategoryinfo:eu-repo/semantics/openAccess
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20250125
dc.subjectHyaluronic acid
dc.subjectHalloysite nanotubes
dc.subjectComposite cryogels
dc.subjectTissue engineering
dc.subjectBlood compatibility
dc.titleCryogel composites based on hyaluronic acid and halloysite nanotubes as scaffold for tissue engineering
dc.typeArticle

Dosyalar