Stable Efficient Solid-State Supercapacitors and Dye-Sensitized Solar Cells Using Ionic Liquid-Doped Solid Biopolymer Electrolyte

dc.authoridSingh, Pramod Kumar/0000-0002-3155-6621
dc.authoridNOOR, I.M./0000-0003-0983-782X
dc.authoridgultekin, burak/0000-0002-8804-7844
dc.contributor.authorKonwar, Subhrajit
dc.contributor.authorSiyahjani Gultekin, Sirin
dc.contributor.authorGultekin, Burak
dc.contributor.authorKumar, Sushant
dc.contributor.authorPunetha, Vinay Deep
dc.contributor.authorYahya, Muhd Zu Azhan Bin
dc.contributor.authorDiantoro, Markus
dc.date.accessioned2025-01-27T20:50:15Z
dc.date.available2025-01-27T20:50:15Z
dc.date.issued2024
dc.departmentÇanakkale Onsekiz Mart Üniversitesi
dc.description.abstractAs synthetic and nonbiodegradable compounds are becoming a great challenge for the environment, developing polymer electrolytes using naturally occurring biodegradable polymers has drawn considerable research interest to replace traditional aqueous electrolytes and synthetic polymer-based polymer electrolytes. This study shows the development of a highly conducting ionic liquid (1-hexyl-3-methylimidazolium iodide)-doped corn starch-based polymer electrolyte. A simple solution cast method is used to prepare biopolymer-based polymer electrolytes and characterized using different electrical, structural, and photoelectrochemical studies. Prepared polymer electrolytes are optimized based on ionic conductivity, which shows an ionic conductivity as high as 1.90 x 10(-3) S/cm. Fourier transform infrared spectroscopy (FTIR) confirms the complexation and composite nature, while X-ray diffraction (XRD) and polarized optical microscopy (POM) affirm the reduction of crystallinity in biopolymer electrolytes after doping with ionic liquid (IL). Thermal and photoelectrochemical studies further affirm that synthesized material is well stable above 200 degrees C and shows a wide electrochemical window of 3.91 V. The ionic transference number measurement (t ion) confirms the predominance of ionic charge carriers in the present system. An electric double-layer capacitor (EDLC) and a dye-sensitized solar cell (DSSC) were fabricated by using the highest conducting corn starch polymer electrolyte. The fabricated EDLC and DSSC delivered an average specific capacitance of 130 F/g and an efficiency of 1.73% in one sun condition, respectively.
dc.description.sponsorshipCSTUP [CST/D-1041]
dc.description.sponsorshipThe author, Pramod K. Singh (PKS), is thankful to the CSTUP (CST/D-1041) for financial assistance.
dc.identifier.doi10.1021/acsomega.4c04815
dc.identifier.endpage39702
dc.identifier.issn2470-1343
dc.identifier.issue38
dc.identifier.pmid39346854
dc.identifier.scopus2-s2.0-85203842743
dc.identifier.scopusqualityQ1
dc.identifier.startpage39696
dc.identifier.urihttps://doi.org/10.1021/acsomega.4c04815
dc.identifier.urihttps://hdl.handle.net/20.500.12428/25452
dc.identifier.volume9
dc.identifier.wosWOS:001310811900001
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.indekslendigikaynakPubMed
dc.language.isoen
dc.publisherAmer Chemical Soc
dc.relation.ispartofAcs Omega
dc.relation.publicationcategoryinfo:eu-repo/semantics/openAccess
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WoS_20250125
dc.subjectPerformance
dc.subjectTransport
dc.titleStable Efficient Solid-State Supercapacitors and Dye-Sensitized Solar Cells Using Ionic Liquid-Doped Solid Biopolymer Electrolyte
dc.typeArticle

Dosyalar