Palladium Metal Nanocomposites Based on PEI-Functionalized Nitrogen-Doped Graphene Quantum Dots: Synthesis, Characterization, Density Functional Theory Modeling, and Cell Cycle Arrest Effects on Human Ovarian Cancer Cells

dc.authoridSUNGUROGLU, ASUMAN/0000-0001-7693-0958
dc.authoridKilic, Murat/0000-0002-1377-2021
dc.authoridKIRLANGIC, Omer Faruk/0000-0003-0219-3312
dc.authoridKaya Sezginer, Ecem/0000-0002-8490-6293
dc.authoridBoyacioglu, Bahadir/0000-0003-3757-3622
dc.contributor.authorGunes, Buket Altinok
dc.contributor.authorKirlangic, Omer Faruk
dc.contributor.authorKilic, Murat
dc.contributor.authorSunguroglu, Asuman
dc.contributor.authorOzgurtas, Taner
dc.contributor.authorSezginer, Ecem Kaya
dc.contributor.authorBoyacioglu, Bahadir
dc.date.accessioned2025-01-27T20:45:45Z
dc.date.available2025-01-27T20:45:45Z
dc.date.issued2024
dc.departmentÇanakkale Onsekiz Mart Üniversitesi
dc.description.abstractIn this study, the synthesis, characterization, density functional theory calculations (DFT), and effect of polyethylenimine (PEI)-functionalized nitrogen-doped graphene quantum dots (PEI N-GQDs) and their palladium metal nanoparticles nanocomposites (PdNPs/PEI N-GQDs) on cancer cells were extensively investigated. The focus also includes investigating their cytotoxic and apoptotic effects on ovarian cancer cells, which pose a serious risk to women's health and have high death rates from delayed diagnosis, inadequate response to treatment, and decreased survival. Graphene quantum dots and their palladium nanocomposites were differentially effective against ovarian cancer cell lines. In particular, the smaller particle size and morphology of PdNPs/PEI N-GQDs nanocomposites compared with PEI N-GQDs probably enhance their activity through highly improved uptake by cells. These findings emphasize the importance of particle size in composite drugs for efficient cancer treatment. DFT results revealed that the Pd-containing nanocomposite, with a smaller highest occupied molecular orbital-lowest unoccupied molecular orbital gap, exhibited higher reactivity and anticancer effects in human ovarian cancer cell line, OVCAR-3. Significantly, the application of nanocomposites to ovarian cancer cells initiated apoptosis, offering valuable insights into the intricate interplay between nanomaterials and cancer biology.
dc.identifier.doi10.1021/acsomega.3c10324
dc.identifier.endpage13358
dc.identifier.issn2470-1343
dc.identifier.issue11
dc.identifier.pmid38524449
dc.identifier.scopus2-s2.0-85187320884
dc.identifier.scopusqualityQ1
dc.identifier.startpage13342
dc.identifier.urihttps://doi.org/10.1021/acsomega.3c10324
dc.identifier.urihttps://hdl.handle.net/20.500.12428/24703
dc.identifier.volume9
dc.identifier.wosWOS:001180643700001
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.indekslendigikaynakPubMed
dc.language.isoen
dc.publisherAmer Chemical Soc
dc.relation.ispartofAcs Omega
dc.relation.publicationcategoryinfo:eu-repo/semantics/openAccess
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WoS_20250125
dc.subjectMolecular-Structure
dc.subjectInduce Apoptosis
dc.subjectAutophagy
dc.subjectDft
dc.subjectMechanisms
dc.subjectElectrons
dc.subjectSpectra
dc.subjectDrug
dc.subjectNbo
dc.titlePalladium Metal Nanocomposites Based on PEI-Functionalized Nitrogen-Doped Graphene Quantum Dots: Synthesis, Characterization, Density Functional Theory Modeling, and Cell Cycle Arrest Effects on Human Ovarian Cancer Cells
dc.typeArticle

Dosyalar