On the Interplay between Electronic Structure and Polarizable Force Fields When Calculating Solution-Phase Charge-Transfer Rates

dc.authoridCheung, Margaret Shun/0000-0001-9235-7661
dc.authoridDunietz, Barry D/0000-0002-6982-8995
dc.authoridZhang, Pengzhi/0000-0001-6920-1490
dc.authoridAksu, Huseyin/0000-0001-9463-3236
dc.authoridHan, Jaebeom/0000-0001-5709-2389
dc.authoridSun, Xiang/0000-0002-2846-8532
dc.contributor.authorHan, Jaebeom
dc.contributor.authorZhang, Pengzhi
dc.contributor.authorAksu, Huseyin
dc.contributor.authorMaiti, Buddhadev
dc.contributor.authorSun, Xiang
dc.contributor.authorGeva, Eitan
dc.contributor.authorDunietz, Barry D.
dc.date.accessioned2025-01-27T20:24:39Z
dc.date.available2025-01-27T20:24:39Z
dc.date.issued2020
dc.departmentÇanakkale Onsekiz Mart Üniversitesi
dc.description.abstractWe present a comprehensive analysis of the interplay between the choice of an electronic structure method and the effect of using polarizable force fields vs. nonpolarizable force fields when calculating solution-phase charge-transfer (CT) rates. The analysis is based on an integrative approach that combines inputs from electronic structure calculations and molecular dynamics simulations and is performed in the context of the carotenoid-porphyrin-C-60 molecular triad dissolved in an explicit tetrahydrofuran (THF) liquid solvent. Marcus theory rate constants are calculated for the multiple CT processes that occur in this system based on either polarizable or nonpolarizable force fields, parameterized using density functional theory (DFT) with either the B3LYP or the Baer-Neuhauser-Livshits (BNL) density functionals. We find that the effect of switching from nonpolarizable to polarizable force fields on the CT rates is strongly dependent on the choice of the density functional. More specifically, the rate constants obtained using polarizable and nonpolarizable force fields differ significantly when B3LYP is used, while much smaller changes are observed when BNL is used. It is shown that this behavior can be traced back to the tendency of B3LYP to overstabilize CT states, thereby pushing the underlying electronic transitions to the deep inverted region, where even small changes in the force fields can lead to significant changes in the CT rate constants. Our results demonstrate the importance of combining polarizable force fields with an electronic structure method that can accurately capture the energies of excited CT states when calculating charge-transfer rates.
dc.description.sponsorshipDepartment of Energy (DOE) Basic Energy Sciences through the Chemical Sciences, Geosciences, and Biosciences Division [DESC0016501]; National Natural Science Foundation of China [21903054]
dc.description.sponsorshipWe thank Zengkui Liu for making Figure 3. E.G., B.D.D., and M.S.C. acknowledge the support from the Department of Energy (DOE) Basic Energy Sciences through the Chemical Sciences, Geosciences, and Biosciences Division (No. DESC0016501). X.S. acknowledges the support from the National Natural Science Foundation of China (No. 21903054). J. H. acknowledges computational resources provided by the National Energy Research Scientific Computing Center (NERSC) and by the Research Computing Data Core at the University of Houston. B.D.D. acknowledges computational resources provided by the Ohio Supercomputer Center70 and the Kent State University, College of Arts and Sciences Computing Cluster.
dc.identifier.doi10.1021/acs.jctc.0c00796
dc.identifier.endpage6490
dc.identifier.issn1549-9618
dc.identifier.issn1549-9626
dc.identifier.issue10
dc.identifier.pmid32997944
dc.identifier.scopus2-s2.0-85092943813
dc.identifier.scopusqualityQ1
dc.identifier.startpage6481
dc.identifier.urihttps://doi.org/10.1021/acs.jctc.0c00796
dc.identifier.urihttps://hdl.handle.net/20.500.12428/22305
dc.identifier.volume16
dc.identifier.wosWOS:000580954000043
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.indekslendigikaynakPubMed
dc.language.isoen
dc.publisherAmer Chemical Soc
dc.relation.ispartofJournal of Chemical Theory and Computation
dc.relation.publicationcategoryinfo:eu-repo/semantics/openAccess
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20250125
dc.subjectDensity-Functional Theory
dc.subjectMolecular-Dynamics
dc.subjectMultiscale Simulation
dc.subjectTransfer States
dc.subjectBasis-Sets
dc.subjectEnergy
dc.subjectModel
dc.subjectTriad
dc.subjectSeparation
dc.subjectSystems
dc.titleOn the Interplay between Electronic Structure and Polarizable Force Fields When Calculating Solution-Phase Charge-Transfer Rates
dc.typeArticle

Dosyalar