THE SOURCE OF SEMIPRIMENESS OF RINGS

dc.authoridDemir, Cagri/0000-0003-0662-9494
dc.contributor.authorAydin, Neset
dc.contributor.authorDemir, Cagri
dc.contributor.authorCamci, Didem Karalarlioglu
dc.date.accessioned2025-01-27T21:19:57Z
dc.date.available2025-01-27T21:19:57Z
dc.date.issued2018
dc.departmentÇanakkale Onsekiz Mart Üniversitesi
dc.description.abstractLet R be an associative ring. We define a subset S-R of R as S-R = {a is an element of R vertical bar aRa = (0)} and call it the source of semiprimeness of R. We first examine some basic properties of the subset S-R in any ring R, and then define the notions such as R being a vertical bar S-R vertical bar-reduced ring, a vertical bar S-R vertical bar-domain and a vertical bar S-R vertical bar-division ring which are slight generalizations of their classical versions. Beside others, we for instance prove that a finite vertical bar S-R vertical bar-domain is necessarily unitary, and is in fact a vertical bar S-R vertical bar-division ring. However, we provide an example showing that a finite vertical bar S-R vertical bar-division ring does not need to be commutative. All possible values for characteristics of unitary vertical bar S-R vertical bar-reduced rings and vertical bar S-R vertical bar-domains are also determined.
dc.identifier.doi10.4134/CKMS.c170409
dc.identifier.endpage1096
dc.identifier.issn1225-1763
dc.identifier.issn2234-3024
dc.identifier.issue4
dc.identifier.scopus2-s2.0-85056526802
dc.identifier.scopusqualityQ3
dc.identifier.startpage1083
dc.identifier.urihttps://doi.org/10.4134/CKMS.c170409
dc.identifier.urihttps://hdl.handle.net/20.500.12428/28782
dc.identifier.volume33
dc.identifier.wosWOS:000449061700004
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherKorean Mathematical Soc
dc.relation.ispartofCommunications of The Korean Mathematical Society
dc.relation.publicationcategoryinfo:eu-repo/semantics/openAccess
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20250125
dc.subjectprime ideal
dc.subjectsemiprime ideal
dc.subjectprime ring and semiprime ring
dc.titleTHE SOURCE OF SEMIPRIMENESS OF RINGS
dc.typeArticle

Dosyalar