Photoelectrochemical Communication between Thylakoid Membranes and Gold Electrodes through Different Quinone Derivatives

dc.authoridTavahodi, Mojtaba/0000-0001-6375-9151
dc.authoridHasan, Kamrul/0000-0002-5764-3109
dc.authoridAkerlund, Hans-Erik/0000-0003-2104-2077
dc.authoridCNU im. U. Fed'kovica, Kafedra marketingu/0000-0003-4498-5641
dc.authoridDilgin, Yusuf/0000-0002-2980-6871
dc.contributor.authorHasan, Kamrul
dc.contributor.authorDilgin, Yusuf
dc.contributor.authorEmek, Sinan Cem
dc.contributor.authorTavahodi, Mojtaba
dc.contributor.authorAkerlund, Hans-Erik
dc.contributor.authorAlbertsson, Per-Ake
dc.contributor.authorGorton, Lo
dc.date.accessioned2025-01-27T20:59:39Z
dc.date.available2025-01-27T20:59:39Z
dc.date.issued2014
dc.departmentÇanakkale Onsekiz Mart Üniversitesi
dc.description.abstractPhotosynthesis is a sustainable process for the conversion of light energy into chemical energy. Thylakoids in energy-transducing photosynthetic membranes are unique in biological membranes because of their distinguished structure and composition. The quantum trapping efficiency of thylakoid membranes is appealing in photobioelectrochemical research. In this study, thylakoid membranes extracted from spinach are shown to communicate with a gold-nanoparticle-modified solid gold electrode (AuNP-Au) through a series of quinone derivatives. Among these, para-benzoquinone (PBQ) is found to be the best soluble electron-transfer mediator, generating the highest photocurrent of approximately 130 mu Acm(-2) from water oxidation under illumination. In addition, the photocurrent density is investigated as a function of applied potential, the effect of light intensity, quinone concentration, and amount of thylakoid membrane. Finally, the source of photocurrent is confirmed by using 3-(3,4-dichlorophenyl)-1,1-dimethylurea (known by its trade name, Diuron), an inhibitor of photosystem II, which decreases the total photocurrent by 50%.
dc.description.sponsorshipSwedish Research Council [2010-5031, 2010-2013]; Nanometer consortium at Lund University (nmC@LU); European Commission [NMP4-SL-2009-229255, FP7-PITN-GA-2010-264772, FP7-PEOPLE-2013-ITN]
dc.description.sponsorshipThe authors thank The Swedish Research Council (projects: 2010-5031, 2010-2013), The Nanometer consortium at Lund University (nmC@LU), The European Commission (projects NMP4-SL-2009-229255 3D-Nanobiodevice, FP7-PITN-GA-2010-264772 Chebana and FP7-PEOPLE-2013-ITN Bioenergy), for financial support.
dc.identifier.doi10.1002/celc.201300148
dc.identifier.endpage139
dc.identifier.issn2196-0216
dc.identifier.issue1
dc.identifier.scopus2-s2.0-84957949424
dc.identifier.scopusqualityQ2
dc.identifier.startpage131
dc.identifier.urihttps://doi.org/10.1002/celc.201300148
dc.identifier.urihttps://hdl.handle.net/20.500.12428/26763
dc.identifier.volume1
dc.identifier.wosWOS:000338287600020
dc.identifier.wosqualityQ4
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherWiley-V C H Verlag Gmbh
dc.relation.ispartofChemelectrochem
dc.relation.publicationcategoryinfo:eu-repo/semantics/openAccess
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20250125
dc.subjectgold electrode
dc.subjectlight
dc.subjectphotocurrent
dc.subjectquinone
dc.subjectthylakoid membranes
dc.titlePhotoelectrochemical Communication between Thylakoid Membranes and Gold Electrodes through Different Quinone Derivatives
dc.typeArticle

Dosyalar