Temporary Topic Models in Social Sciences: A Study on STM

dc.contributor.authorKurnaz, Ahmet
dc.contributor.authorUnver, H. Akin
dc.date.accessioned2025-01-27T21:03:52Z
dc.date.available2025-01-27T21:03:52Z
dc.date.issued2022
dc.departmentÇanakkale Onsekiz Mart Üniversitesi
dc.description30th IEEE Signal Processing and Communications Applications Conference (SIU) -- MAY 15-18, 2022 -- Safranbolu, TURKEY
dc.description.abstractTopic models are rapidly becoming popular in social sciences. However, researchers should pay attention to some critical steps while using these models. The format and content of the textual data, language, existence of covariates, and preprocessing steps are the most crucial elements of a topic model analysis. This study inspects the effect of various datasets and preprocessing steps on Structural Topic Models (STM). Results shows that preprocessing, which depends on the research question, profoundly affects the model performance. Besides, the existence of multilingual data weakens the topic quality. Also, the algorithm performance is different among long and short texts. Last, the potential usage of covariates in the model enhances its functionality in social science.
dc.description.sponsorshipIEEE,IEEE Turkey Sect,Bahcesehir Univ
dc.identifier.doi10.1109/SIU55565.2022.9864923
dc.identifier.isbn978-1-6654-5092-8
dc.identifier.issn2165-0608
dc.identifier.scopus2-s2.0-85138709412
dc.identifier.scopusqualityN/A
dc.identifier.urihttps://doi.org/10.1109/SIU55565.2022.9864923
dc.identifier.urihttps://hdl.handle.net/20.500.12428/27477
dc.identifier.wosWOS:001307163400261
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isotr
dc.publisherIEEE
dc.relation.ispartof2022 30th Signal Processing and Communications Applications Conference, Siu
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20250125
dc.subjecttopic models
dc.subjectSTM
dc.subjectcontent analysis
dc.subjecttext mining
dc.subjectsocial media
dc.titleTemporary Topic Models in Social Sciences: A Study on STM
dc.title.alternativeSosyal Bilimlerde Dönemsel Konu Modelleri: STM Üzerine Bir Çalişma
dc.typeConference Object

Dosyalar