Pollen of Arbutus unedo: Effects of plant growth regulators

dc.contributor.authorGokbayrak, Zeliha
dc.contributor.authorEngin, Hakan
dc.contributor.authorAkcal, Arda
dc.contributor.authorKiraz, Hatice
dc.date.accessioned2025-01-27T21:00:13Z
dc.date.available2025-01-27T21:00:13Z
dc.date.issued2020
dc.departmentÇanakkale Onsekiz Mart Üniversitesi
dc.description.abstractArbutus unedo is a species mainly used for landscaping purposes and lately for honey production. Its antioxidant characteristics have also been a subject of of research interest. The germination of pollen grains freshly collected from flowers was tested in vitro, and 30% sucrose gave the highest pollen germination. Subsequently, three growth regulators belonging to the categories of gibberellins and brassinosteroids [24-epibrassinolide (Ebl) and 22S,23S-homobrassinolide (Hbl)] were added to the growth medium singly or in double combinations (gibberellin + brassinosteroid), and the petri dishes were kept for 24 hours at 26 +/- 1 degrees C. The results showed that the highest germination rates were obtained from treatments with 0.01 ppm Hbl (45.47%) and 0.001 ppm Hbl (26.74%). They were followed by treatments with 0.001 ppm Ebl, 25 ppm GA(3) and 0.1 ppm Ebl. As the concentration of GA(3) increased, the germination rate declined considerably. Statistical analysis of the combined treatments showed that combinations of growth regulators lowered the germination rates compared to their individual application. Moreover, action of the lowest GA(3) concentration (25 ppm) best matched the effects of brassinosteroids, and increasing the GA(3) concentration in combined treatments did not improve germination. The highest germination was obtained with 0.1 ppm Hbl, followed by all Ebl treatments. Brassinosteroids might be an inducer of pollen germination in plants depending on their type and concentrations. When individually included in the growth medium, the extent of this induction was greater with the homobrassinolide than with the epibrassinolide. Their interactions with gibberellins are shown to be mostly dependent on the concentration of gibberellic acid used. The tested epibrassinolide was more consistent than the homobrassinolide in maintaining higher germination levels. The findings of this study indicate that gathering more information from studies involving other plant species is needed to clarify the role of brassinosteroids in in vitro and in vivo germination.
dc.identifier.doi10.2298/BOTSERB2001055G
dc.identifier.endpage59
dc.identifier.issn1821-2158
dc.identifier.issn1821-2638
dc.identifier.issue1
dc.identifier.scopus2-s2.0-85084766936
dc.identifier.scopusqualityQ3
dc.identifier.startpage55
dc.identifier.urihttps://doi.org/10.2298/BOTSERB2001055G
dc.identifier.urihttps://hdl.handle.net/20.500.12428/26966
dc.identifier.volume44
dc.identifier.wosWOS:000526082900006
dc.identifier.wosqualityQ4
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherUniv Belgrade, Inst Botany & Botanical Garden
dc.relation.ispartofBotanica Serbica
dc.relation.publicationcategoryinfo:eu-repo/semantics/openAccess
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WoS_20250125
dc.subjectanther
dc.subjectepibrassinolide
dc.subjectflower
dc.subjectgibberellin
dc.subjectstrawberry tree
dc.titlePollen of Arbutus unedo: Effects of plant growth regulators
dc.typeArticle

Dosyalar