Multi-walled carbon nanotube grafted 3D spacer multi-scale composites for electromagnetic interference shielding

dc.authoridYILDIRIM, FERHAT/0000-0002-0524-4050
dc.authoridESKIZEYBEK, VOLKAN/0000-0002-5373-0379
dc.authoridSas, Hatice S/0000-0002-5179-2509
dc.contributor.authorYildirim, Ferhat
dc.contributor.authorKabakci, Elif
dc.contributor.authorSas, Hatice S.
dc.contributor.authorEskizeybek, Volkan
dc.date.accessioned2025-01-27T20:50:13Z
dc.date.available2025-01-27T20:50:13Z
dc.date.issued2022
dc.departmentÇanakkale Onsekiz Mart Üniversitesi
dc.description.abstractThe development of structural fiber reinforced polymer composites with various additional functionalities is becoming a hot research area to achieve the application of multi-functional composites in the aerospace and automotive industries. An innovative material solution is 3D spacer composites with distinctive anisotropic structural characteristics. Herein, we report the manufacturing of multi-walled carbon nanotubes (MWCNTs) grafted of 3D spacer glass/epoxy multi-scale composites and their electromagnetic interference shielding efficiencies (EMSE). To manufacture multi-scale composites, we utilized dip coating, vacuum filtering, and vacuum infusion methods to introduce MWCNTs of the woven fabric, while we also modified the epoxy resin with MWCNTs to increase electrical conductivity of intrinsic insulator epoxy resin. Owing to the rectangular-shaped channel structure, which is beneficial for multiple reflection and scattering between top and bottom face sheets, the resultant 3D spacer multi-scale composite represented a good EMSE performance of -18.3 dB in the frequency range of 8.2-12.4 GHz with an increase of 107% comparing the corresponding neat composite counterpart. Moreover, we measured the in-plane conductivity as 1.89E-2 S/m after MWCNTs grafting, while the out-of-plane conductivity remained three times lower than the in-plane conductivity. Dynamic mechanical analysis revealed that the storage modulus increased almost three times with the MWCNTs grafting, while glass transition temperature shifted to higher temperatures (from 77.5 to 89.7 degrees C). Therefore, we anticipate that our study will expand the use of 3D spacer composites in the aviation and automotive industries.
dc.description.sponsorshipCanakkale Onsekiz Mart University The Scientific Research Coordination Unit [FBA-2020-3455]
dc.description.sponsorshipThis work was supported by Canakkale Onsekiz Mart University The Scientific Research Coordination Unit, Project number: FBA-2020-3455.
dc.identifier.doi10.1002/pc.26885
dc.identifier.endpage5703
dc.identifier.issn0272-8397
dc.identifier.issn1548-0569
dc.identifier.issue8
dc.identifier.scopus2-s2.0-85133726799
dc.identifier.scopusqualityQ1
dc.identifier.startpage5690
dc.identifier.urihttps://doi.org/10.1002/pc.26885
dc.identifier.urihttps://hdl.handle.net/20.500.12428/25444
dc.identifier.volume43
dc.identifier.wosWOS:000822788100001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherWiley
dc.relation.ispartofPolymer Composites
dc.relation.publicationcategoryinfo:eu-repo/semantics/openAccess
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20250125
dc.subject3D spacer composite
dc.subjectcarbon nanotube
dc.subjectdynamic mechanical analysis
dc.subjectEMI shielding
dc.subjectgrafting
dc.titleMulti-walled carbon nanotube grafted 3D spacer multi-scale composites for electromagnetic interference shielding
dc.typeArticle

Dosyalar