Analysis of deceptive data attacks with adversarial machine learning for solar photovoltaic power generation forecasting

[ X ]

Tarih

2024

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

The solar photovoltaics (PV) energy resources have become more important with their significant contribution to the current power grid among renewable energy resources. However, the integration of the solar PV causes reliability issues in the power grid due to its high dependence on the weather condition. The predictability and stability of forecasting are critical for fully utilizing solar power. This study presents an Artificial Neural Network (ANN)-based solar PV power generation forecasting using a public dataset to form a basis experimental testbed to demonstrate analysis and impact of deceptive data attacks with adversarial machine learning. In addition, it evaluates the algorithms' performance using the Root Mean Squared Error (RMSE), Mean Squared Error (MSE), and Mean Average Error (MAE) metrics for two main cases, i.e., with and without adversarial machine learning attacks. The results show that the ANN-based models are vulnerable to adversarial attacks.

Açıklama

Anahtar Kelimeler

Solar PV energy generation forecasting, Adversarial machine learning attacks, Forecasting

Kaynak

Electrical Engineering

WoS Q Değeri

Q3

Scopus Q Değeri

Q2

Cilt

106

Sayı

2

Künye