Dirac constraint analysis and symplectic structure of anti-self-dual Yang-Mills equations

dc.authoridCamci, Ugur/0000-0003-3431-2574
dc.authoridCAN, Zehra/0000-0002-3039-7454
dc.contributor.authorCamci, U.
dc.contributor.authorCan, Z.
dc.contributor.authorNutku, Y.
dc.contributor.authorSucu, Y.
dc.contributor.authorYazici, D.
dc.date.accessioned2025-01-27T20:31:46Z
dc.date.available2025-01-27T20:31:46Z
dc.date.issued2006
dc.departmentÇanakkale Onsekiz Mart Üniversitesi
dc.description.abstractWe present the explicit form of the symplectic structure of anti-self-dual Yang-Mills (ASDYM) equations in Yang's J- and K-gauges in order to establish the bi-Hamiltonian structure of this completely integrable system. Dirac's theory of constraints is applied to the degenerate Lagrangians that yield the ASDYM equations. The constraints axe second class as in the case of all completely integrable systems which stands in sharp contrast to the situation in full Yang-Mills theory. We construct the Dirac brackets and the symplectic 2-forms for both J- and K-gauges. The covariant symplectic structure of ASDYM equations is obtained using the Witten-Zuckerman formalism. We show that the appropriate component of the Witten-Zuckerman closed and conserved 2-form vector density reduces to the symplectic 2-form obtained from Dirac's theory. Finally, we present the Backlund transformation between the J- and K-gauges in order to apply Magri's theorem to the respective two Hamiltonian structures.
dc.identifier.doi10.1007/s12043-006-0022-0
dc.identifier.endpage1053
dc.identifier.issn0304-4289
dc.identifier.issue6
dc.identifier.scopus2-s2.0-33845906133
dc.identifier.scopusqualityQ2
dc.identifier.startpage1043
dc.identifier.urihttps://doi.org/10.1007/s12043-006-0022-0
dc.identifier.urihttps://hdl.handle.net/20.500.12428/23263
dc.identifier.volume67
dc.identifier.wosWOS:000243166000005
dc.identifier.wosqualityQ4
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherIndian Academy Sciences
dc.relation.ispartofPramana-Journal of Physics
dc.relation.publicationcategoryinfo:eu-repo/semantics/openAccess
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20250125
dc.subjectintegrable equations in physics
dc.subjectintegrable field theories
dc.subjectDirac constraint analysis
dc.subjectsymplectic structure
dc.subjectanti-self-dual Yang-Mills equations
dc.titleDirac constraint analysis and symplectic structure of anti-self-dual Yang-Mills equations
dc.typeArticle

Dosyalar