Yazar "Sutekin, S. Duygu" seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Biocompatible poly(galacturonic acid) micro/nanogels with controllable degradation via tunable chemical crosslinking(Elsevier, 2022) Suner, Selin S.; Ari, Betul; Sutekin, S. Duygu; Şahiner, NurettinHere, one-pot labor-less preparation of two different polygalacturonic acid (PGA) micro/nanogel formulations, PGA-1 and PGA-2, by respectively crosslinking the PGA chains with divinyl sulfone (DVS) and trimethylolpmpane triglycidyl ether (TMPGDE) were reported. Various crosslinker ratios, 2.5, 10, 50, and 100% were used for both crosslinkers to demonstrate the tunability of their degradation properties. The PGA micro/nanogels were found spherical-shaped porous particles in 0.5-5.0 mu m size range by SEM. The hydrolytic degradation and stability of PGA micro/nanogels in pH 1.0, 7.4, and 9.0 buffer solutions can be controlled by changing the degree of crosslinking. Accordingly, 32 +/- 8% and 36 +/- 2% weight losses were attained for PGA-1-10% and PGA-2-10% micro/nanogels at pH 1, respectively, and 46 +/- 6%, and 68 +/- 6% degradations were determined at pH 7.4 within 4 weeks. However, no degradation was observed for both PGA-based micro/nanogel formulations prepared at 25% and 100% crosslinker ratios at all pH conditions. All PGA-based micro/nanogels were totally degraded within 7-10 days at pH 9.0. In the presence of pectinase and amyloglucosidase enzymes, all formulations of PGA micro/nanogels showed more than 80% degradation within 12 h. Furthermore, both PGA formulations showed no significant cytotoxicity against L929 fibroblast cells with 90% and above cell viability up to 250 mg/mL concentrations.Öğe Poly(2-aminoethyl methacrylate) based microgels catalyst system to be used in hydrolysis and methanolysis of NaBH4 for H2 generation(Elsevier Ltd, 2023) Demirci, Şahin; Sutekin, S. Duygu; Güven, Olgun; Şahiner, NurettinThe poly(2-aminoethyl methacrylate) (p(AEM)) microgels were synthesized by microemulsion polymerization technique and used for in situ metal nanoparticle preparation to render as p(AEM)-M (M: Co or Ni) microgel composites and were used in p(AEM) based poly ionic liquid (PIL) microgels. Next, these p(AEM)) based microgel materials were used as catalysts for hydrogen (H2) production from both hydrolysis and methanolysis reactions of sodium borohydride (NaBH4). It was found that the catalytic hydrolysis of the NaBH4 reaction, catalyzed by p(AEM)-Co microgel composite was completed in 140 min, whereas the methanolysis of NaBH4 methanolysis catalyzed by the PIL of p(AEM)+Cl− microgels was completed in 5 min both with 250 ± 2 mL H2 production. Furthermore, p(AEM)-Co microgel composite catalysts maintained 80% catalytic activity after 5 consecutive uses in NaBH4 hydrolysis. On the other hand, p(AEM)+Cl− microgels were found to afford more than 50% catalytic activity even after 20 repetitive use in NaBH4 methanolysis due to superior regeneration ability. Moreover, activation energy values for p(AEM)-Co microgel composites catalyzed NaBH4 hydrolysis reaction were calculated as 38.9 kJ/mol in comparison to 37.3 kJ/mol activation energy of p(AEM)+Cl− microgel catalyzed methanolysis reaction.Öğe Poly(vinyl amine) microparticles derived from N-Vinylformamide and their versatile use(Springer Science and Business Media Deutschland GmbH, 2022) Demirci, Şahin; Sutekin, S. Duygu; Kurt, Saliha B.; Güven, Olgun; Şahiner, NurettinCationic polymers with primary amine groups that can easily be functionalized or coupled with substrates by complexation or hydrogen bonding are especially advantageous in preparing particles for biomedical applications. Poly(vinyl amine) (PVAm) is a cationic polyelectrolyte containing the highest number of primary amine groups among any other polymers. Here, we introduce a general method in synthesizing PVAm microparticles via a surfactant-free water-in-oil emulsion technique using cyclohexane as the oil phase and aqueous PVAm solution as the dispersed phase. PVAm particles were prepared to employ two different bifunctional chemical crosslinkers, divinyl sulfone (DVS) and poly(ethylene glycol) diglycidyl ether (PEGGE). The prepared particles were further treated with HCl to protonate the amine groups of PVAm within particles. The effect of crosslinker types and pH on the hydrolytic degradation of PVAm particles were also investigated at three different solution pHs, 5.4, 7.4, and 9, to simulate the skin, blood, and intestinal pH environments, respectively. The blood compatibility of the PVAm particles was evaluated by in vitro hemolysis and blood clotting assays. Furthermore, antifungal and antibacterial efficacy of PVAm-based particles and their protonated forms were tested against C. albicans yeast and E. coli, S. aureus, B. subtilis, and P. aeruginosa bacterial strains.Öğe Polymeric Composites Based on Carboxymethyl Cellulose Cryogel and Conductive Polymers: Synthesis and Characterization(Mdpi, 2020) Demirci, Şahin; Sutekin, S. Duygu; Şahiner, NurettinIn this study, a super porous polymeric network prepared from a natural polymer, carboxymethyl cellulose (CMC), was used as a scaffold in the preparation of conductive polymers such as poly(Aniline) (PANi), poly(Pyrrole) (PPy), and poly(Thiophene) (PTh). CMC-conductive polymer composites were characterized by Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA) techniques, and conductivity measurements. The highest conductivity was observed as 4.36 x 10(-4) +/- 4.63 x 10(-5) S.cm(-1) for CMC-PANi cryogel composite. The changes in conductivity of prepared CMC cryogel and its corresponding PAN, PPy, and PTh composites were tested against HCl and NH3 vapor. The changes in conductivity values of CMC cryogel upon HCl and NH3 vapor treatment were found to increase 1.5- and 2-fold, respectively, whereas CMC-PANi composites showed a 143-fold increase in conductivity upon HCl and a 12-fold decrease in conductivity upon NH3 treatment, suggesting the use of natural polymer-conductive polymer composites as sensor for these gases.