A Recursive mean filter for image denoising

dc.contributor.authorErkan, Ugur
dc.contributor.authorEnginoglu, Serdar
dc.contributor.authorThanh, Dang N.H.
dc.date.accessioned2025-01-27T18:52:58Z
dc.date.available2025-01-27T18:52:58Z
dc.date.issued2019
dc.departmentÇanakkale Onsekiz Mart Üniversitesi
dc.description2019 International Conference on Artificial Intelligence and Data Processing Symposium, IDAP 2019 -- 21 September 2019 through 22 September 2019 -- Malatya -- 153040
dc.description.abstractIn this article, we propose a Recursive Mean Filter (RMF) to remove the salt-And-pepper noise (SPN). We compare RMF with similar methods such as Decision Based Algorithm (DBA), Modified Decision-Based Unsymmetric Trimmed Median Filter (MDBUTMF), and Noise Adaptive Fuzzy Switching Median Filter (NAFSMF). In the experiments, we implement the test on 15 native images of the MATLAB library. To assess the denoising quality, we consider the following noise densities (noise levels): 10%, 30%, 50%, 70%, 90%; and use the well-known two quality metrics: Peak Signal-To-Noise Ratio (PSNR) and Structural Similarity (SSIM). The results show that RMF removes the noise effectively and competes with other state-of-The-Art denoising methods. © 2019 IEEE.
dc.identifier.doi10.1109/IDAP.2019.8875957
dc.identifier.isbn978-172812932-7
dc.identifier.scopus2-s2.0-85074875917
dc.identifier.scopusqualityN/A
dc.identifier.urihttps://doi.org/10.1109/IDAP.2019.8875957
dc.identifier.urihttps://hdl.handle.net/20.500.12428/12513
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relation.ispartof2019 International Conference on Artificial Intelligence and Data Processing Symposium, IDAP 2019
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_Scopus_20250125
dc.subjectImage denoising; Matrix algebra; Noise removal; Non-linear functions; Salt-And-pepper noise
dc.titleA Recursive mean filter for image denoising
dc.typeConference Object

Dosyalar