ON NEAR-RING IDEALS WITH (?,t)-DERIVATION

dc.contributor.authorGolbasi, Oznur
dc.contributor.authorAydin, Neset
dc.date.accessioned2025-01-27T21:23:51Z
dc.date.available2025-01-27T21:23:51Z
dc.date.issued2007
dc.departmentÇanakkale Onsekiz Mart Üniversitesi
dc.description.abstractLet N be a 3-prime left near-ring with multiplicative center Z, a (sigma, tau)-derivation D on N is defined to be an additive endomorphism satisfying the product rule D (x y) = tau (x) D (y)+ D (x) sigma (y) for all x, y 2 N, where sigma and tau are automorphisms of N. A nonempty subset U of N will be called a semigroup right ideal (resp. semigroup left ideal) if U N subset of U (resp. N U subset of U) and if U is both a semigroup right ideal and a semigroup left ideal, it be called a semigroup ideal. We prove the following results: Let D be a (sigma, tau)-derivation on N such that sigma D = D sigma, tau D = D tau. (i) If U is semigroup right ideal of N and D (U) subset of Z then N is commutative ring. (ii) If U is a semigroup ideal of N and D (2) (U) = 0 then D = 0. (i i i) If a is an element of N and [D (U), a] sigma, tau = 0 then D (a) = 0 or a is an element of Z.
dc.identifier.endpage92
dc.identifier.issn1212-5059
dc.identifier.issue2
dc.identifier.startpage87
dc.identifier.urihttps://hdl.handle.net/20.500.12428/29345
dc.identifier.volume43
dc.identifier.wosWOS:000434503900001
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.language.isoen
dc.publisherMasaryk Univ, Fac Science
dc.relation.ispartofArchivum Mathematicum
dc.relation.publicationcategoryinfo:eu-repo/semantics/openAccess
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20250125
dc.subjectprime near-ring
dc.subjectderivation
dc.subject(sigma,tau)-derivation
dc.titleON NEAR-RING IDEALS WITH (?,t)-DERIVATION
dc.typeArticle

Dosyalar