ON NEAR-RING IDEALS WITH (?,t)-DERIVATION
| dc.contributor.author | Golbasi, Oznur | |
| dc.contributor.author | Aydin, Neset | |
| dc.date.accessioned | 2025-01-27T21:23:51Z | |
| dc.date.available | 2025-01-27T21:23:51Z | |
| dc.date.issued | 2007 | |
| dc.department | Çanakkale Onsekiz Mart Üniversitesi | |
| dc.description.abstract | Let N be a 3-prime left near-ring with multiplicative center Z, a (sigma, tau)-derivation D on N is defined to be an additive endomorphism satisfying the product rule D (x y) = tau (x) D (y)+ D (x) sigma (y) for all x, y 2 N, where sigma and tau are automorphisms of N. A nonempty subset U of N will be called a semigroup right ideal (resp. semigroup left ideal) if U N subset of U (resp. N U subset of U) and if U is both a semigroup right ideal and a semigroup left ideal, it be called a semigroup ideal. We prove the following results: Let D be a (sigma, tau)-derivation on N such that sigma D = D sigma, tau D = D tau. (i) If U is semigroup right ideal of N and D (U) subset of Z then N is commutative ring. (ii) If U is a semigroup ideal of N and D (2) (U) = 0 then D = 0. (i i i) If a is an element of N and [D (U), a] sigma, tau = 0 then D (a) = 0 or a is an element of Z. | |
| dc.identifier.endpage | 92 | |
| dc.identifier.issn | 1212-5059 | |
| dc.identifier.issue | 2 | |
| dc.identifier.startpage | 87 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12428/29345 | |
| dc.identifier.volume | 43 | |
| dc.identifier.wos | WOS:000434503900001 | |
| dc.identifier.wosquality | N/A | |
| dc.indekslendigikaynak | Web of Science | |
| dc.language.iso | en | |
| dc.publisher | Masaryk Univ, Fac Science | |
| dc.relation.ispartof | Archivum Mathematicum | |
| dc.relation.publicationcategory | info:eu-repo/semantics/openAccess | |
| dc.rights | info:eu-repo/semantics/closedAccess | |
| dc.snmz | KA_WoS_20250125 | |
| dc.subject | prime near-ring | |
| dc.subject | derivation | |
| dc.subject | (sigma,tau)-derivation | |
| dc.title | ON NEAR-RING IDEALS WITH (?,t)-DERIVATION | |
| dc.type | Article |











