On near-ring ideals with (σ, τ)-derivation

dc.authoridAydın, Neşet / 0000-0002-7193-3399
dc.contributor.authorGölbaşi, Öznur
dc.contributor.authorAydın, Neşet
dc.date.accessioned2025-01-27T19:04:11Z
dc.date.available2025-01-27T19:04:11Z
dc.date.issued2007
dc.departmentÇanakkale Onsekiz Mart Üniversitesi
dc.description.abstractLet N be a 3-prime left near-ring with multiplicative center Z, a (?, ?)-derivation D on N is defined to be an additive endomorphism satisfying the product rule D(xy) = ?(x)D(y) + D(x)?(y) for all x, y ? N, where ? and ? are automorphisms of N. A nonempty subset U of N will be called a semigroup right ideal (resp. semigroup left ideal) if U N ? U (resp. NU ? U) and if U is both a semigroup right ideal and a semigroup left ideal, it be called a semigroup ideal. We prove the following results: Let D be a (?, ?)-derivation on N such that ?D = D?, ?D = D?. (i) If U is semigroup right ideal of N and D(U) ? Z then N is commutative ring, (ii) If U is a semigroup ideal of N and D2(U) = 0 then D = 0. (iii) If a ? N and [D(U),a]?? = 0 then D(a) = 0 or a ? Z.
dc.identifier.endpage92
dc.identifier.issn0044-8753
dc.identifier.issue2
dc.identifier.scopus2-s2.0-34547322114
dc.identifier.scopusqualityQ4
dc.identifier.startpage87
dc.identifier.urihttps://hdl.handle.net/20.500.12428/13850
dc.identifier.volume43
dc.indekslendigikaynakScopus
dc.language.isoen
dc.relation.ispartofArchivum Mathematicum
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_Scopus_20250125
dc.subject(σ, τ)-derivation
dc.subjectDerivation
dc.subjectPrime near-ring
dc.titleOn near-ring ideals with (σ, τ)-derivation
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Neset Aydin_Makale.pdf
Boyut:
87.21 KB
Biçim:
Adobe Portable Document Format