On near-ring ideals with (σ, τ)-derivation
| dc.authorid | Aydın, Neşet / 0000-0002-7193-3399 | |
| dc.contributor.author | Gölbaşi, Öznur | |
| dc.contributor.author | Aydın, Neşet | |
| dc.date.accessioned | 2025-01-27T19:04:11Z | |
| dc.date.available | 2025-01-27T19:04:11Z | |
| dc.date.issued | 2007 | |
| dc.department | Çanakkale Onsekiz Mart Üniversitesi | |
| dc.description.abstract | Let N be a 3-prime left near-ring with multiplicative center Z, a (?, ?)-derivation D on N is defined to be an additive endomorphism satisfying the product rule D(xy) = ?(x)D(y) + D(x)?(y) for all x, y ? N, where ? and ? are automorphisms of N. A nonempty subset U of N will be called a semigroup right ideal (resp. semigroup left ideal) if U N ? U (resp. NU ? U) and if U is both a semigroup right ideal and a semigroup left ideal, it be called a semigroup ideal. We prove the following results: Let D be a (?, ?)-derivation on N such that ?D = D?, ?D = D?. (i) If U is semigroup right ideal of N and D(U) ? Z then N is commutative ring, (ii) If U is a semigroup ideal of N and D2(U) = 0 then D = 0. (iii) If a ? N and [D(U),a]?? = 0 then D(a) = 0 or a ? Z. | |
| dc.identifier.endpage | 92 | |
| dc.identifier.issn | 0044-8753 | |
| dc.identifier.issue | 2 | |
| dc.identifier.scopus | 2-s2.0-34547322114 | |
| dc.identifier.scopusquality | Q4 | |
| dc.identifier.startpage | 87 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12428/13850 | |
| dc.identifier.volume | 43 | |
| dc.indekslendigikaynak | Scopus | |
| dc.language.iso | en | |
| dc.relation.ispartof | Archivum Mathematicum | |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
| dc.rights | info:eu-repo/semantics/openAccess | |
| dc.snmz | KA_Scopus_20250125 | |
| dc.subject | (σ, τ)-derivation | |
| dc.subject | Derivation | |
| dc.subject | Prime near-ring | |
| dc.title | On near-ring ideals with (σ, τ)-derivation | |
| dc.type | Article |
Dosyalar
Orijinal paket
1 - 1 / 1











