Approximations of an Hankel transform of the product of two Bessel J-functions

dc.contributor.authorDemircan, Osman
dc.date.accessioned2025-01-27T19:02:41Z
dc.date.available2025-01-27T19:02:41Z
dc.date.issued2006
dc.departmentÇanakkale Onsekiz Mart Üniversitesi
dc.description.abstractA Hankel transform of the product of two Bessel J-functions under different restrictions on its parameters was approximated by infinite series expansions to the product of two hypergeometric functions, which in turn usually reduce to polynomials and thus, can be generated recursively. Such approximation makes the general transform very suitable for automatic computation. The transform concerned arise in the theory of the light changes of eclipsing binary star systems.
dc.identifier.endpage41
dc.identifier.issn1109-2769
dc.identifier.issue1
dc.identifier.scopus2-s2.0-29944445971
dc.identifier.scopusqualityQ2
dc.identifier.startpage39
dc.identifier.urihttps://hdl.handle.net/20.500.12428/13627
dc.identifier.volume5
dc.indekslendigikaynakScopus
dc.language.isoen
dc.relation.ispartofWSEAS Transactions on Mathematics
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_Scopus_20250125
dc.subjectAppell hypergeometric functions; Bailey's theorem; Bessel J-functions; Hypergeometric functions; Jacobi polynomial; Pochhammer symbol
dc.titleApproximations of an Hankel transform of the product of two Bessel J-functions
dc.typeArticle

Dosyalar