Forecasting of the Dental Workforce with Machine Learning Models

dc.contributor.authorAtalan, Abdulkadir
dc.contributor.authorŞahin, Hasan
dc.date.accessioned2025-01-27T19:36:40Z
dc.date.available2025-01-27T19:36:40Z
dc.date.issued2024
dc.departmentÇanakkale Onsekiz Mart Üniversitesi
dc.description.abstractThe aim of this study is to determine the factors affecting the dental workforce in Turkey to estimate the dentists employed with machine learning models. The predicted results were obtained by applying machine learning methods; namely, generalized linear model (GLM), deep learning (DL), decision tree (DT), random forest (RF), gradient boosted trees (GBT), and support vector machine (SVM) were compared. The RF model, which has a high correlation value (R2=0.998) with the lowest error rate (RMSE=656.6, AE=393.1, RE=0.025, SE=496115.7), provided the best estimation result. The SVM model provided the worst estimate data based on the values of the performance measurement criteria. This study is the most comprehensive in terms of the dental workforce, which is among the healthcare resources. Finally, we present an example of future applications for machine learning models that will significantly impact dental healthcare management.
dc.identifier.doi10.46387/bjesr.1455345
dc.identifier.endpage132
dc.identifier.issn2687-4415
dc.identifier.issue1
dc.identifier.startpage125
dc.identifier.trdizinid1232761
dc.identifier.urihttps://doi.org/10.46387/bjesr.1455345
dc.identifier.urihttps://search.trdizin.gov.tr/tr/yayin/detay/1232761
dc.identifier.urihttps://hdl.handle.net/20.500.12428/16908
dc.identifier.volume6
dc.indekslendigikaynakTR-Dizin
dc.language.isoen
dc.relation.ispartofMühendislik bilimleri ve araştırmaları dergisi (Online)
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_TRD_20250125
dc.subjectDiş Hekimliği
dc.subjectSağlık Politikaları ve Hizmetleri
dc.subjectHemşirelik
dc.titleForecasting of the Dental Workforce with Machine Learning Models
dc.typeArticle

Dosyalar