A Generalization of Source of Semiprimeness
dc.contributor.author | Camcı, Didem Karalarlıoğlu | |
dc.contributor.author | Yeşil, Didem | |
dc.contributor.author | Mekera, Rasie | |
dc.contributor.author | Camcı, Çetin | |
dc.date.accessioned | 2025-05-29T05:37:07Z | |
dc.date.available | 2025-05-29T05:37:07Z | |
dc.date.issued | 2024 | |
dc.department | Çanakkale Onsekiz Mart Üniversitesi | |
dc.description.abstract | This paper characterizes the semigroup ideal $\mathcal{L}_{R}^{n}(I)$ of a ring $R$, where $I$ is an ideal of $R$, defined by $\mathcal{L}_{R}^{0}(I)=I$ and $\mathcal{L}_{R}^{n}(I)=\{a\in R \mid aRa\subseteq \mathcal{L}_{R}^{n-1}(I)\}$, for all $n\in \mathbb{Z}^+$, the set of all the positive integers. Moreover, it studies the basic properties of the set $\mathcal{L}_{R}^{n}(I)$ and defines $n$-prime ideals, $n$-semiprime ideals, $n$-prime rings, and $n$-semiprime rings. This study also investigates relationships between the sets $\mathcal{L}_{R}(I)$ and $\mathcal{L}_{R}^{n}(I)$ and exemplifies some of the related properties. It obtains the main results concerning prime rings and prime ideals by the properties of the set $\mathcal{L}_{R}^{n}(I)$. | |
dc.identifier.doi | 10.53570/jnt.1581076 | |
dc.identifier.endpage | 68 | |
dc.identifier.issn | 2149-1402 | |
dc.identifier.issue | 49 | |
dc.identifier.startpage | 62 | |
dc.identifier.uri | https://doi.org/10.53570/jnt.1581076 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12428/31613 | |
dc.language.iso | en | |
dc.publisher | Naim ÇAĞMAN | |
dc.relation.ispartof | Journal of New Theory | |
dc.relation.publicationcategory | Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.snmz | KA_DergiPark_20250529 | |
dc.subject | Source of semiprimeness | |
dc.subject | semiprime rings | |
dc.subject | semiprime ideals | |
dc.subject | prime rings | |
dc.subject | prime ideals | |
dc.title | A Generalization of Source of Semiprimeness | |
dc.type | Research Article |