Robust Logistic Modelling for Datasets with Unusual Points

dc.contributor.authorTekin, Kumru Urgancı
dc.contributor.authorMestav, Burcu
dc.contributor.authorİyit, Neslihan
dc.date.accessioned2025-01-27T19:37:16Z
dc.date.available2025-01-27T19:37:16Z
dc.date.issued2021
dc.departmentÇanakkale Onsekiz Mart Üniversitesi
dc.description.abstractUnusual Points (UPs) occur for different reasons, such as an observational error or the\rpresence of a phenomenon with unknown cause. Influential Points (IPs), one of the UPs, have a\rnegative effect on parameter estimation in the Logistic Regression model. Many researchers in fisheries\rsciences face this problem and have recourse to some manipulations to overcome this problem. The\rlimitations of these manipulations have prompted researchers to use more suitable and innovative\restimation techniques to deal with the problem. In this study, we examine the classification accuracies\rand parameter estimation performances of the Maximum Likelihood (ML) estimator and robust\restimators through modified real datasets and simulation experiments. Besides, we discuss the potential\rapplicability of the assessed robust estimators to the estimation models when the IPs are kept in the\rdataset. The obtained results show that the Weighted Maximum Likelihood (WML) and Weighted\rBianco-Yohai (WBY) estimators of robust estimators outperform the others.
dc.identifier.doi10.53570/jnt.971062
dc.identifier.endpage63
dc.identifier.issn2149-1402
dc.identifier.issue36
dc.identifier.startpage49
dc.identifier.trdizinid535314
dc.identifier.urihttps://doi.org/10.53570/jnt.971062
dc.identifier.urihttps://search.trdizin.gov.tr/tr/yayin/detay/535314
dc.identifier.urihttps://hdl.handle.net/20.500.12428/17174
dc.identifier.volume2021
dc.indekslendigikaynakTR-Dizin
dc.language.isoen
dc.relation.ispartofJournal of New Theory
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_TRD_20250125
dc.subjectİstatistik ve Olasılık
dc.titleRobust Logistic Modelling for Datasets with Unusual Points
dc.typeArticle

Dosyalar