TYPE I ERROR RATES AND TEST POWER FOR SOME OUTLIER DETECTING TESTS

dc.contributor.authorYigit, Soner
dc.contributor.authorMendes, Mehmet
dc.contributor.authorMirtagioglu, Hamit
dc.date.accessioned2025-01-27T21:24:02Z
dc.date.available2025-01-27T21:24:02Z
dc.date.issued2011
dc.departmentÇanakkale Onsekiz Mart Üniversitesi
dc.description.abstractThis study is conducted to compare some outlier detection tests such as Grubbs, Dixon, Chauvenet criterion and Weisberg t-test with respect to Type I error rate and test power. For this purpose, random numbers from normal population are generated by Monte Carlo simulation technique. Results of 50,000 simulation trials showed that the Weisberg t-test gave the most reliable results with respect to the others. Chauvenet criterion has followed this test. Dixon and Grubbs tests have not displayed reliable results except for studying with small sample sizes. As a result, regardless of the sample size being studied, Weisberg t-test should be used as detecting whether there is an outlier in the data set or not.
dc.identifier.endpage167
dc.identifier.issn0972-3617
dc.identifier.issue2
dc.identifier.startpage159
dc.identifier.urihttps://hdl.handle.net/20.500.12428/29409
dc.identifier.volume21
dc.identifier.wosWOS:000421225200005
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.language.isoen
dc.publisherPushpa Publishing House
dc.relation.ispartofAdvances and Applications in Statistics
dc.relation.publicationcategoryinfo:eu-repo/semantics/openAccess
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20250125
dc.subjectoutlier
dc.subjectType I error
dc.subjecttest p ower
dc.subjectWeisberg t-test
dc.subjectGrubbs test
dc.titleTYPE I ERROR RATES AND TEST POWER FOR SOME OUTLIER DETECTING TESTS
dc.typeArticle

Dosyalar