Homoderivations in Prime Rings
| dc.contributor.author | Engin, Ayşe | |
| dc.contributor.author | Aydın, Neşet | |
| dc.date.accessioned | 2025-01-27T19:37:14Z | |
| dc.date.available | 2025-01-27T19:37:14Z | |
| dc.date.issued | 2023 | |
| dc.department | Çanakkale Onsekiz Mart Üniversitesi | |
| dc.description.abstract | The study consists of two parts. The first part shows that if h1(x)h2(y) = h3(x)h4(y), for all x, y ? R, then h1 = h3 and h2 = h4. Here, h1, h2, h3, and h4 are zero- power valued non-zero homoderivations of a prime ring R. Moreover, this study provide an explanation related to h1 and h2 satisfying the condition ah1 + h2b = 0. The second part shows that L ? Z if one of the following conditions is satisfied: i. h(L) = (0), ii. h(L) ? Z, iii. h(xy) = xy, for all x, y ? L, iv. h(xy) = yx, for all x, y ? L, or v. h([x, y]) = 0, and for all x, y ? L. Here, R is a prime ring with a characteristic other than 2, h is a homoderivation of R, and L is a non-zero square closed Lie ideal of R. | |
| dc.identifier.doi | 10.53570/jnt.1258402 | |
| dc.identifier.endpage | 34 | |
| dc.identifier.issn | 2149-1402 | |
| dc.identifier.issue | 43 | |
| dc.identifier.startpage | 23 | |
| dc.identifier.trdizinid | 1187125 | |
| dc.identifier.uri | https://doi.org/10.53570/jnt.1258402 | |
| dc.identifier.uri | https://search.trdizin.gov.tr/tr/yayin/detay/1187125 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12428/17167 | |
| dc.indekslendigikaynak | TR-Dizin | |
| dc.language.iso | en | |
| dc.relation.ispartof | Journal of New Theory | |
| dc.relation.publicationcategory | Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı | |
| dc.rights | info:eu-repo/semantics/openAccess | |
| dc.snmz | KA_TRD_20250125 | |
| dc.subject | Biyoloji | |
| dc.title | Homoderivations in Prime Rings | |
| dc.type | Article |











