Automated fabric inspection system development aided with convolutional autoencoder-based defect detection
[ X ]
Tarih
2024
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Industrial automatic fabric inspection system, a critical technology in the industry, enhances both total production quantity and quality compared to conventional inspection techniques. This study aims to create a reliable and effective real-time automated visual inspection system for fabrics, focusing on defect detection. The goals of the study can be stated as; installing a system with advanced technology for capturing and processing images swiftly, the development and deployment of a system capable of autonomously learning and scanning fabrics in use, and the creation of a smart framework for accurate fabric defect detection and classification. We focus on the development of unsupervised fabric defect detection using a convolutional autoencoder model, and defect classification using a convolutional neural network model, which takes input as the feature vector generated by the convolutional autoencoder. The experimental outcomes have displayed significant success rates in both detecting defects and classifying them, confirming the effectiveness of the framework in real-time visual inspection systems.
Açıklama
Anahtar Kelimeler
Fabric defect detection, Fabric inspection system, Convolutional autoencoder
Kaynak
Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi
WoS Q Değeri
Scopus Q Değeri
Cilt
13
Sayı
4