Chitosan based fibers embedding carbon dots with anti-bacterial and fluorescent properties
Tarih
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
Özet
Due to the intriguing properties of Chitosan (CS), many efforts have been paid for CS-based fiber preparation. As it is impossible to prepare CS fiber directly, facilitating polymers such as polyvinyl alcohol (PVA) possessing necessary properties that enable CS-based fiber fabrication is used. For this purpose, 3 wt% of CS in 90% acetic acid solution and 6 wt% PVA solution in DI water used in CS/PVA fiber preparation at different proportions for example, 2:1, 9:1 and 10:1 by weight to fabricate fibers by electrospinning method. Furthermore, to render fluorescent property to CS/PVA (9:1) fibers, N-doped carbon dots (C-dots) added into fiber precursor during fiber preparation. The emission peak of C-dots based fibers that with fluorescent features was observed at around 436 nm. The morphological, structural and, thermal characterizations of CS-based fibers were done with scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analyzer, respectively. Anti-bacterial activity of bare CS/PVA was increased with the increase in amounts of C-dots embedding. The inhibition of zone of CS/PVA (9:1) fibers was increased from 1.8 +/- 0.2 cm to 2.1 +/- 0.3 cm and 2.9 +/- 0.4 cm against E. coli by increasing the amounts of C-dots from 2.9 mg and 5 mg. Also, the same behavior was observed against S. aureus where the inhibition zone is increased from 2.5 +/- 0.1 cm to 3.2 and 3.5 cm by doubling the C-dots amounts in CS/PVA fiber. Moreover, bare and C-dots containing CS/PVA fibers were found blood compatible (nonhemolytic) up to 1 mg/mL concentration according to hemolysis and blood clotting tests.