A new empirical approach for prediction of rock mass strength based on a strength reducing curve zone instead of unique strength reducing curve
Tarih
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
Özet
As is well known from rock mechanics literature, the mechanical parameters of a rock mass cannot be obtained by conventional laboratory tests due to the difficulties encountered in the preparation of cores from a rock mass containing discontinuities. To overcome these difficulties, researchers have focused on developing empirical equations for predicting stress-strain behavior of a rock mass, including based on measurements of the discontinuity patterns. However, the UCS value of rock mass (UCS RM ) can be predicted by decreasing UCS i based on quality of rock mass such as Rock Mass Rating (RMR), Geological Strength Index (GSI), Q value, etc. For this reason, an empirical equation in a unique reducing curve form has limited application in generalizing on the prediction of UCS RM from particularly soft rock mass to hard rock mass. In this study, a new empirical approach is developed to be used for predicting of strength of rock masses from soft to hard rock masses. In addition, a new procedure for defining of the disturbance effect on the strength of rock mass is introduced to the new empirical approach in conjunction with Hoek and Brown failure criterion. © 2010 International Society for Rock Mechanics. All rights reserved.











