A note on (?, ?)-derivations in prime rings

dc.contributor.authorAydin, Neşet
dc.date.accessioned2025-01-27T19:02:50Z
dc.date.available2025-01-27T19:02:50Z
dc.date.issued2008
dc.departmentÇanakkale Onsekiz Mart Üniversitesi
dc.description.abstractLet R be a 2-torsion free prime ring and let ?, ? be automorphisms of R. For any x, y ? R, set [x, y]?, ? = x?(y) - ?(y)x. Suppose that d is a (?, ?)-derivation defined on R. In the present paper it is shown that (i) if d is a nonzero (?, ?)-derivation and h is a nonzero derivation of R such that dh(R) ? C?, ? then R is commutative, (ii) if R satisfies [d(x), x]?, ? ? C?, ?, then either d = 0 or R is commutative. (iii) if I is a nonzero ideal of R such that d(xy) = d(y/x) for all x, y ? I, then R is commutative.
dc.identifier.endpage352
dc.identifier.issn0019-5588
dc.identifier.issue4
dc.identifier.scopus2-s2.0-60549092168
dc.identifier.scopusqualityQ3
dc.identifier.startpage347
dc.identifier.urihttps://hdl.handle.net/20.500.12428/13689
dc.identifier.volume39
dc.indekslendigikaynakScopus
dc.language.isoen
dc.relation.ispartofIndian Journal of Pure and Applied Mathematics
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_Scopus_20250125
dc.subjectCommutativity; Prime rings, (?, ?)-derivations, ideals
dc.titleA note on (?, ?)-derivations in prime rings
dc.typeArticle

Dosyalar