A note on (?, ?)-derivations in prime rings
| dc.contributor.author | Aydin, Neşet | |
| dc.date.accessioned | 2025-01-27T19:02:50Z | |
| dc.date.available | 2025-01-27T19:02:50Z | |
| dc.date.issued | 2008 | |
| dc.department | Çanakkale Onsekiz Mart Üniversitesi | |
| dc.description.abstract | Let R be a 2-torsion free prime ring and let ?, ? be automorphisms of R. For any x, y ? R, set [x, y]?, ? = x?(y) - ?(y)x. Suppose that d is a (?, ?)-derivation defined on R. In the present paper it is shown that (i) if d is a nonzero (?, ?)-derivation and h is a nonzero derivation of R such that dh(R) ? C?, ? then R is commutative, (ii) if R satisfies [d(x), x]?, ? ? C?, ?, then either d = 0 or R is commutative. (iii) if I is a nonzero ideal of R such that d(xy) = d(y/x) for all x, y ? I, then R is commutative. | |
| dc.identifier.endpage | 352 | |
| dc.identifier.issn | 0019-5588 | |
| dc.identifier.issue | 4 | |
| dc.identifier.scopus | 2-s2.0-60549092168 | |
| dc.identifier.scopusquality | Q3 | |
| dc.identifier.startpage | 347 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12428/13689 | |
| dc.identifier.volume | 39 | |
| dc.indekslendigikaynak | Scopus | |
| dc.language.iso | en | |
| dc.relation.ispartof | Indian Journal of Pure and Applied Mathematics | |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
| dc.rights | info:eu-repo/semantics/closedAccess | |
| dc.snmz | KA_Scopus_20250125 | |
| dc.subject | Commutativity; Prime rings, (?, ?)-derivations, ideals | |
| dc.title | A note on (?, ?)-derivations in prime rings | |
| dc.type | Article |











