A unified presentation of some families of multivariable polynomials
[ X ]
Tarih
2006
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
In this paper, we present a systematic investigation of a unification (and generalization) of the Chan-Chyan-Srivastava multivariable polynomials and the multivariable extension of the familiar Lagrange-Hermite polynomials. We derive various classes of multilinear and mixed multilateral generating functions for these unified polynomials. We also discuss other miscellaneous properties of these general families of multivariable polynomials.
Açıklama
Anahtar Kelimeler
Addition formulas; Chan-Chyan-Srivastava multivariable polynomials; Explicit representation, Pochhammer symbol; Lagrange polynomials; Lagrange-Hermite polynomials; Multilinear and mixed multilateral generating functions; Srivastava's theorem
Kaynak
Integral Transforms and Special Functions
WoS Q Değeri
Scopus Q Değeri
Q2
Cilt
17
Sayı
4