A unified presentation of some families of multivariable polynomials

[ X ]

Tarih

2006

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In this paper, we present a systematic investigation of a unification (and generalization) of the Chan-Chyan-Srivastava multivariable polynomials and the multivariable extension of the familiar Lagrange-Hermite polynomials. We derive various classes of multilinear and mixed multilateral generating functions for these unified polynomials. We also discuss other miscellaneous properties of these general families of multivariable polynomials.

Açıklama

Anahtar Kelimeler

Addition formulas; Chan-Chyan-Srivastava multivariable polynomials; Explicit representation, Pochhammer symbol; Lagrange polynomials; Lagrange-Hermite polynomials; Multilinear and mixed multilateral generating functions; Srivastava's theorem

Kaynak

Integral Transforms and Special Functions

WoS Q Değeri

Scopus Q Değeri

Q2

Cilt

17

Sayı

4

Künye