Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Kalkan, Yildiray" seçeneğine göre listele

Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    Genistein Exerts Neuroprotective Effect on Focal Cerebral Ischemia Injury in Rats
    (Springer/Plenum Publishers, 2015) Aras, Adem Bozkurt; Guven, Mustafa; Akman, Tarik; Alacam, Hasan; Kalkan, Yildiray; Sılan, Coşkun; Cosar, Murat
    Brain ischemia and treatment are one of the important topics in neurological science. Free oxygen radicals and inflammation formed after ischemia are accepted as the most important causes of damage. Currently, there are studies on many chemopreventive agents to prevent cerebral ischemia damage. Our aim is to research the preventive effect of the active ingredient in genistein, previously unstudied, on oxidative damage in cerebral ischemia. Rats were randomly divided into three groups: control group (no medication or surgical procedure), ischemia group, and artery ischemia+genistein group, sacrificed at 24 h after ischemia. The harvested brain tissue from the right hemisphere was investigated histopathologically and for tissue biochemistry. Superoxide dismutase and nuclear respiratory factor 1 values decreased after ischemia and they increased after genistein treatment, while increased malondialdehyde levels after ischemia reduced after treatment. Apoptosis-related cysteine peptidase caspase-3 and caspase-9 values increased after ischemia, but reduced after treatment. Our study revealed that genistein treatment in cerebral ischemia reduced oxidative stress and neuronal degeneration. We believe that genistein treatment may be an alternative treatment method.
  • [ X ]
    Öğe
    Neuroprotective effects of daidzein on focal cerebral ischemia injury in rats
    (Shenyang Editorial Dept Neural Regeneration Res, 2015) Aras, Adem Bozkurt; Guven, Mustafa; Akman, Tarik; Ozkan, Adile; Sen, Halil Murat; Duz, Ugur; Kalkan, Yildiray
    Daidzein, a plant extract, has antioxidant activity. It is hypothesized, in this study, that daidzein exhibits neuroprotective effects on cerebral ischemia. Rat models of middle cerebral artery occlusion were intraperitoneally administered daidzein. Biochemical and immunohistochemical tests showed that superoxide dismutase and nuclear respiratory factor 1 expression levels in the brain tissue decreased after ischemia and they increased obviously after daidzein administration; malondialdehyde level and apoptosis-related cysteine peptidase caspase-3 and caspase-9 immunoreactivity in the brain tissue increased after ischemia and they decreased obviously after daidzein administration. Hematoxylin-eosin staining and luxol fast blue staining results showed that intraperitoneal administration of daidzein markedly alleviated neuronal damage in the ischemic brain tissue. These findings suggest that daidzein exhibits neuroprotective effects on ischemic brain tissue by decreasing oxygen free radical production, which validates the aforementioned hypothesis.
  • [ X ]
    Öğe
    The Neuroprotective Effect of Glycyrrhizic Acid on an Experimental Model of Focal Cerebral Ischemia in Rats
    (Springer/Plenum Publishers, 2015) Akman, Tarik; Guven, Mustafa; Aras, Adem Bozkurt; Ozkan, Adile; Sen, Halil Murat; Okuyucu, Ali; Kalkan, Yildiray
    Cerebral ischemia is still one of the most important topics in neurosciences. Our study aimed to investigate the neuroprotective and anti-oxidant effects of glycyrrhizic acid on focal cerebral ischemia in rats. Twenty-four rats were divided equally into three groups. A middle cerebral artery occlusion model was performed in this study where sham and glycyrrhizic acid were administered intraperitoneally following middle cerebral artery occlusion. Group I was evaluated as control. Malondialdehyde (MDA), superoxide dismutase (SOD), and nuclear respiratory factor-1 (NRF1) levels were analyzed biochemically on the right cerebral hemisphere, while ischemic histopathological studies were completed to investigate the anti-oxidant status. Biochemical results showed that SOD and NRF1 levels were significantly increased in the glycyrrhizic acid group compared with the sham group while MDA levels were significantly decreased. On histopathological examination, cerebral edema, vacuolization, degeneration, and destruction of neurons were decreased in the glycyrrhizic acid group compared with the sham group. Cerebral ischemia was attenuated by glycyrrhizic acid administration. These observations indicate that glycyrrhizic acid may have potential as a therapeutic agent in cerebral ischemia by preventing oxidative stress.
  • [ X ]
    Öğe
    The protective effect of syringic acid on ischemia injury in rat brain
    (Tubitak Scientific & Technological Research Council Turkey, 2015) Guven, Mustafa; Aras, Adem Bozkurt; Topaloglu, Naci; Ozkan, Adile; Sen, Halil Murat; Kalkan, Yildiray; Okuyucu, Ali
    Background/aim: Brain ischemia and treatment are important topics in neurological science. Free oxygen radicals and inflammation formed after ischemia are accepted as the most significant causes of damage. Currently there are studies on many chemopreventive agents to prevent cerebral ischemia damage. Our aim is to research the preventive effect of the active ingredient in syringic acid, previously unstudied, on oxidative damage in cerebral ischemia. Materials and methods: The rats were randomly divided into 4 groups: control group (no medication or surgical procedure), sham group (artery occlusion), artery occlusion + syringic acid group sacrificed at 6 h, and artery occlusion + syringic acid group sacrificed at 24 h. Obtained brain tissue from the right hemisphere was investigated histopathologically and for tissue biochemistry. Results: Superoxide dismutase and nuclear respiratory factor 1 values decreased after ischemia and they increased after syringic acid treatment, while increased malondialdehyde levels after ischemia were reduced after treatment. Caspase-3 and caspase-9 values increased after ischemia and decreased after treatment; this reduction was more pronounced at 24 h. Conclusion: Our study revealed that syringic acid treatment in cerebral ischemia reduced oxidative stress and neuronal degeneration. In the light of the biochemical and histopathologic results of the present study, we think that syringic acid treatment may be an alternative treatment method.

| Çanakkale Onsekiz Mart Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Çanakkale Onsekiz Mart Üniversitesi, Çanakkale, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim