Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Yar, Adem" seçeneğine göre listele

Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    CNT-PAN hybrid nanofibrous mat interleaved carbon/epoxy laminates with improved Mode I interlaminar fracture toughness
    (Elsevier Sci Ltd, 2018) Eskizeybek, Volkan; Yar, Adem; Avci, Ahmet
    Interleaving laminated composites with electrospun nanofibrous mats comes out as a promising micro scale strategy to strengthen interlaminar regions of laminated composites. The aim of this study is to evaluate the synergetic contribution of nano- and micro-scale mechanisms on interlaminar delamination. For this, carbon nanotubes (CNTs) reinforced polyacrylonitrile (PAN) electrospun hybrid mats were successfully fabricated and utilized as interleaves within the interlaminar region of carbon/epoxy laminated composites. The Mode I interlaminar fracture toughness values were enhanced up to 77% by introducing CNTPAN nanofibrous interleaves. Specifically, the nano-scale toughening mechanisms such as CNTs bridging, CNTs pull-out, and sword-sheath increased the Mode I fracture toughness by 45% with respect to neat PAN nanofibrous interleaves. The related micro- and nano-scale toughening mechanisms were evaluated based on the fracture surface analysis. Atomic force microscopy was also utilized to quantify the magnitude of surface roughness changes on the interlaminar region with respect to multi scale interleaving reinforcement and correlate surface roughness changes due to crack deflection to increased fracture toughness. (C) 2018 Elsevier Ltd. All rights reserved.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Combined effect of fiber hybridization and matrix modification on mechanical properties of polymer composites
    (SAGE Publications Ltd, 2023) Demir, Okan; Yar, Adem; Eskizeybek, Volkan; Avcı, Ahmet
    Glass/carbon fiber reinforced hybrid composites are great candidates for wind turbine blade manufacturers to make larger blades. Variation of stacking sequences ensures design freedom to the composite engineers to optimize the composite structure's mechanical performance. On the other hand, matrix modification of polymer composites with nanoparticles is also of interest to introduce multifunctional properties. This research aims to scrutinize the influence of simultaneous fiber hybridization and matrix modification on polymer composites’ tensile, flexural, and low-velocity impact properties. Hybrid glass/carbon epoxy composites and hybrid glass/carbon/multi-walled carbon nanotube (MWCNT) multiscale polymer composites of stacking sequences [GCGCGC]S, [CGCGCG]S, and [G6C6] were manufactured. Fiber hybridization dramatically improved tensile strength between 51% and 76% compared to glass fiber composite. Depending on the stacking sequence, the flexural strength of the hybrid composites was improved between 10% and 16% concerning carbon fiber composite. With the introduction of MWCNTs, a slight increase in the tensile strength for unsymmetrical hybrid composites by around 5% and decreases by 7% for symmetrical ones were observed. Similar behavior was seen for bending characteristics. Additionally, low-velocity impact tests showed that it is achievable to bring greater impact peak forces up to 70% for hybrid composites than carbon fiber epoxy composites. MWCNTs modification of the matrix restrained the impact damage propagation, as proved by C-scan analysis.
  • [ X ]
    Öğe
    Electrospun TiO2/ZnO/PAN hybrid nanofiber membranes with efficient photocatalytic activity
    (Royal Soc Chemistry, 2017) Yar, Adem; Haspulat, Bircan; Ustun, Tugay; Eskizeybek, Volkan; Avci, Ahmet; Kamis, Handan; Achour, Slimane
    Electrospun polyacrylonitrile (PAN) nanofibers were decorated with TiO2, ZnO and TiO2/ZnO nanoparticles for the first time to prepare flexible multifunctional nanofibrous membranes. First, the arc-discharge process was utilized to prepare TiO2, ZnO and TiO2/ZnO nanoparticles and then the hybrid electrospun nanofibers were spun from PAN/nanoparticle colloids. X-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were utilized to characterize the resulting nanoparticles and nanofiber loaded nanoparticles. The microscopic investigations revealed that the specifically TiO2 nanoparticles tend to agglomerate within the PAN nanofiber resulting increased surface roughness; however, ZnO nanorods with 1D morphology are aligned as parallel to the fiber axis. Photocatalytic activity of the hybrid nanofibers was performed by pursuing the degradation of malachite green (MG) dye under UV light irradiation. The fabricated TiO2/ZnO/PAN hybrid nanofibers showed excellent photocatalytic efficiency with at least two times higher reaction rates compared to the bare PAN nanofibers. The results suggest that the photocatalytically active TiO2/ZnO/PAN hybrid nanofibers can be considered as filtering materials for a variety of applications in the fields of wastewater systems without the need of post processing stages for separating catalysts from the liquid medium.

| Çanakkale Onsekiz Mart Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Çanakkale Onsekiz Mart Üniversitesi, Çanakkale, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim