Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Tripodi, Gianluca" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Glucosinolates in Human Health: Metabolic Pathways, Bioavailability, and Potential in Chronic Disease Prevention
    (MDPI, 2025) Baldelli, Sara; Lombardo, Mauro; D'Amato, Alfonsina; Karav, Sercan; Tripodi, Gianluca; Aiello, Gilda
    Glucosinolates (GSLs) are sulfur-containing compounds predominantly found in cruciferous vegetables such as broccoli, kale, and Brussels sprouts, and are recognized for their health-promoting properties. Upon consumption, GSLs undergo hydrolysis by the enzyme myrosinase, resulting in bioactive compounds like isothiocyanates and specific indole glucosinolate degradation products, such as indole-3-carbinol (I3C) and 3,3 '-diindolylmethane (DIM), which contribute to a range of health benefits, including anti-cancer, anti-inflammatory, and cardioprotective effects. This review explores the structure, metabolism, and bioavailability of GSLs. Recent evidence supports the protective role of GSLs in chronic diseases, with mechanisms including the modulation of oxidative stress, inflammation, and detoxification pathways. Furthermore, the innovative strategies to enhance GSL bioactivity, such as biofortification, genetic introgression, and optimized food processing methods, have been examined. These approaches seek to increase GSL content in edible plants, thereby maximizing their health benefits. This comprehensive review provides insights into dietary recommendations, the impact of food preparation, and recent advances in GSL bioavailability enhancement, highlighting the significant potential of these bioactive compounds in promoting human health and preventing chronic diseases.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Nitric Oxide in Parkinson's Disease: The Potential Role of Dietary Nitrate in Enhancing Cognitive and Motor Health via the Nitrate-Nitrite-Nitric Oxide Pathway
    (MDPI, 2025) Tripodi, Gianluca; Lombardo, Mauro; Kerav, Sercan; Aiello, Gilda; Baldelli, Sara
    Background/Objectives: Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta, leading to motor symptoms such as tremor, rigidity, and bradykinesia. The pathological hallmarks of PD include Lewy bodies and mechanisms like oxidative/nitrosative stress, chronic inflammation, and mitochondrial dysfunction. Nitric oxide (NO), produced by nitric oxide synthase (NOS) isoforms, plays a dual role in neuroprotection and neurodegeneration. Excessive NO production exacerbates neuroinflammation and oxidative/nitrosative damage, contributing to dopaminergic cell death. This review explores NO's role in PD pathogenesis and investigates dietary nitrate as a therapeutic strategy to regulate NO levels. Methods: A literature review of studies addressing the role of NO in PD was conducted using major scientific databases, including PubMed, Scopus, and Web of Science, using keywords such as nitric oxide, NOSs, Parkinson's disease, and nitrate neuroprotection in PD. Studies on nitrate metabolism via the nitrate-nitrite-NO pathway and its effects on PD hallmarks were analyzed. Studies regarding the role of nitrosamine formation in PD, which are mainly formed during the nitrification process of amines (nitrogen-containing compounds), often due to chemical reactions in the presence of nitrite or nitrate, were also examined. In particular, nitrate has been shown to induce oxidative stress, affect the mitochondrial function, and contribute to inflammatory phenomena in the brain, another factor closely related to the pathogenesis of PD. Results: Excessive NO production, particularly from iNOS and nNOS, was strongly associated with neuroinflammation and oxidative/nitrosative stress, amplifying neuronal damage in PD. Dietary nitrate was shown to enhance NO bioavailability through the nitrate-nitrite-NO pathway, mitigating inflammation and oxidative/nitrosative damage. Conclusions: Dysregulated NO production contributes significantly to PD progression via inflammatory and oxidative/nitrosative pathways. Dietary nitrate, by modulating NO levels, offers a promising therapeutic strategy to counteract these pathological mechanisms. Further clinical trials are warranted to establish its efficacy and optimize its use in PD management.

| Çanakkale Onsekiz Mart Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Çanakkale Onsekiz Mart Üniversitesi, Çanakkale, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim