Yazar "Terlemezoglu, Makbule" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Fine-tuning SnO2 films: Unleashing their potential through deposition temperature optimization by ultrasonic spray pyrolysis(Elsevier Sci Ltd, 2024) Sarica, Emrah; Ozcan, Hakan Bilal; Gunes, Ibrahim; Terlemezoglu, Makbule; Akyuz, IdrisIn this study, the optimization of the deposition temperature, which directly affects the crystallinity, morphology, and electrical conductivity of SnO2 films deposited onto Corning Eagle XG glass substrates using the ultrasonic spray pyrolysis technique, was investigated to tailor their physical properties for various applications. Structural analyses revealed that the films had a tetragonal rutile structure, and while films deposited at lower temperatures exhibited a higher prevalence of (200) oriented planes, yet this decreased with an increase in deposition temperature. Morphological analyses showed that the films consisted of grains with octahedral shapes, and films deposited at lower temperatures were found to be more compact. The films had bandgap energy ranges between 3.96 eV and 4.02 eV. Hall effect measurements revealed that not only the carrier concentration decreased from 4.52 x 10(19) cm(-3) to 0.80 x 10(19) cm(-3), but the mobility also decreased from 23.32 cm(2)/Vs to 12.85 cm(2)/Vs. Among all the films, it was noted that the films deposited at 350 degrees C had the highest figure of merit which is 12.3 x 10(-4) Omega(-1). It can be concluded that the changes underlying these variations are associated with structural and morphological changes depending on the substrate temperature. Also, significant results have been attained in applications where precise control over crystal structure and surface morphology is crucial.Öğe Flow rate-dependent properties of SnO2 thin films deposited by ultrasonic spray pyrolysis(Elsevier, 2024) Gunes, Ibrahim; Sarica, Emrah; Ozcan, Hakan Bilal; Terlemezoglu, Makbule; Akyuz, IdrisThis study unveils the outcomes of fabricating and characterizing SnO2 thin films through ultrasonic spray pyrolysis. Also, it focuses on the effect of manipulating flow rates on their structural, optical, and electrical characteristics. Structural analysis revealed that the films exhibited a tetragonal rutile structure and (200) crystallographic planes become preferential as the flow rate increases. Crystallite size and lattice strain were calculated using the Debye-Scherrer and Williamson-Hall methods, demonstrating that higher the flow rate resulted in larger crystallite sizes and reduced lattice strain. SEM images showed that all films have uniform and consistent film thickness and grain size enlarged with the solution flow rate as well. The films exhibited high optical transparency (>80%) in the visible spectrum, making them suitable for transparent conductive applications. The band gap of the films decreased gradually with flow rates, and the Urbach energy slightly increased. Hall effect measurements revealed higher flow rates resulted in lower sheet resistance (lowest is 1.32 x 10(2) Omega/sq) and higher carrier mobility (highest is 22.12 cm(2)/V.s), indicating improved electrical properties. These findings offer valuable perspectives for forthcoming researches.Öğe Nanowire geometry effects on devices and transport mechanisms: SnS2/SiNW heterojunction(Springer, 2023) Coskun, Emre; Emir, Cansu; Terlemezoglu, Makbule; Parlak, MehmetThe semiconductor nanowire technology has become essential in developing more complex and efficient devices. In this study, the Si nanowire (SiNW) heterojunction structure with a two-dimensional SnS2 thin film was investigated. The SiNW array was created by the metal-assisted etching method because of length control and production over large areas of nanowires. The created SiNW has more diminishing reflectivity compared with Si planar substrate. The diode characteristics of SnS2/SiNW and SnS2/Si planar heterojunctions were investigated by dark current analysis at room temperature, and the improving diode characteristics by the three-dimensional interface between SiNW and SnS2 thin film were discussed. Transport mechanisms of the SiNW heterojunction were also studied for various methods. Thermionic emission and thermally assisted tunneling models are the dominant mechanisms for low voltages (0.02-0.20 V), and the space charge limiting current mechanism dominates the current for comparingly high voltages (0.20-0.40 V). All the values reveal the significant impact of the SiNW on heterojunctions for improving efficiency.