Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Sharifi-Rad, Mehdi" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    Impact of Natural Compounds on Neurodegenerative Disorders: From Preclinical to Pharmacotherapeutics
    (Mdpi, 2020) Sharifi-Rad, Mehdi; Lankatillake, Chintha; Dias, Daniel A.; Docea, Anca Oana; Mahomoodally, Mohamad Fawzi; Lobine, Devina; Chazot, Paul L.
    Among the major neurodegenerative disorders (NDDs), Alzheimer's disease (AD) and Parkinson's disease (PD), are a huge socioeconomic burden. Over many centuries, people have sought a cure for NDDs from the natural herbals. Many medicinal plants and their secondary metabolites are reported with the ability to alleviate the symptoms of NDDs. The major mechanisms identified, through which phytochemicals exert their neuroprotective effects and potential maintenance of neurological health in ageing, include antioxidant, anti-inflammatory, antithrombotic, antiapoptotic, acetylcholinesterase and monoamine oxidase inhibition and neurotrophic activities. This article reviews the mechanisms of action of some of the major herbal products with potential in the treatment of NDDs according to their molecular targets, as well as their regional sources (Asia, America and Africa). A number of studies demonstrated the beneficial properties of plant extracts or their bioactive compounds against NDDs. Herbal products may potentially offer new treatment options for patients with NDDs, which is a cheaper and culturally suitable alternative to conventional therapies for millions of people in the world with age-related NDDs.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Phytochemical constituents, biological activities, and health-promoting effects of the genus Origanum
    (John Wiley and Sons Ltd, 2021) Sharifi-Rad, Mehdi; Yılmaz, Yakup Berkay; Antika, Gizem; Salehi, Bahare; Boyuneğmez Tümer, Tuğba
    Origanum species are mostly distributed around the Mediterranean, Euro-Siberian, and Iran-Siberian regions. Since time immemorial, the genus has popularly been used in Southern Europe, as well as on the American continent as a spice now known all over the world under the name “oregano” or “pizza-spice.” Origanum plants are also employed to prepare bitter tinctures, wines, vermouths, beer, and kvass. The major components of Origanum essential oil are various terpenes, phenols, phenolic acids, and flavonoids with predominant occurrence of carvacrol and thymol (with reasonable amounts of p-cymen and -terpinene) or of terpinene-4-ol, linalool, and sabinene hydrate. Many species of Origanum genus are used to treat kidney, digestive, nervous, and respiratory disorders, spasms, sore throat, diabetes, lean menstruation, hypertension, cold, insomnia, toothache, headache, epilepsy, urinary tract infections, etc. Origanum essential oil showed potent bioactivities owing to its major constituents' carvacrol, thymol, and monoterpenes. Several preclinical studies evidenced its pharmacological potential as antiproliferative or anticancer, antidiabetic, antihyperlipidemic, anti-obesity, renoprotective, antiinflammatory, vasoprotective, cardioprotective, antinociceptive, insecticidal, and hepatoprotective properties. Its nanotechnological applications as a promising pharmaceutical in order to enhance the solubility, physicochemical stability, and the accumulation rate of its essential oils have been investigated. However, Origanum has been reported causing angioedema, perioral dermatitis, allergic reaction, inhibition of platelet aggregation, hypoglycemia, and abortion. Conclusive evidences are still required for its clinical applications against human medical conditions. Toxicity analyses and risk assessment will aid to its safe and efficacious application. In addition, elaborate structure–activity studies are needed to explore the potential use of Origanum-derived phytochemicals as promising drug candidates.

| Çanakkale Onsekiz Mart Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Çanakkale Onsekiz Mart Üniversitesi, Çanakkale, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim