Yazar "Sanchez-Guerra, Marco" seçeneğine göre listele
Listeleniyor 1 - 6 / 6
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Associations of Annual Ambient Fine Particulate Matter Mass and Components with Mitochondrial DNA Abundance(Lippincott Williams & Wilkins, 2017) Peng, Cheng; Cayir, Akin; Sanchez-Guerra, Marco; Di, Qian; Wilson, Ander; Zhong, Jia; Kosheleva, AnnaBackground: Fine particulate matter (PM2.5) represents a mixture of components with potentially different toxicities. However, little is known about the relative effects of PM2.5 mass and PM2.5 components on mitochondrial DNA (mtDNA) abundance, which may lie on the pathway of PM2.5-associated disease. Methods: We studied 646 elderly male participants in the Normative Aging Study from Greater Boston to investigate associations of long-term exposure to PM2.5 mass and PM2.5 components with mtDNA abundance. We estimated concentrations of pollutants for the 365-day preceding examination at each participant's address using spatial- and temporal-resolved chemical transport models. We measured blood mtDNA abundance using RT-PCR. We applied a shrinkage and selection method (adaptive LASSO) to identify components most predictive of mtDNA abundance, and fit multipollutant linear mixed-effects models with subject-specific intercept to estimate the relative effects of individual PM component. Results: MtDNA abundance was negatively associated with PM2.5 mass in the previous year and-after adjusting for PM2.5 mass-several PM2.5 components, including organic carbon, sulfate (marginally), and nitrate. In multipollutant models including as independent variables PM2.5 mass and PM2.5 components selected by LASSO, nitrate was associated with mtDNA abundance. An SD increase in annual PM2.5-associated nitrate was associated with a 0.12 SD (95% confidence intervals [CI] = -0.18, -0.07) decrease in mtDNA abundance. Analyses restricted to PM2.5 annual concentration below the current 1-year U.S. Environmental Protection Agency standard produced similar results. Conclusions: Long-term exposures to PM2.5-associated nitrate were related to decreased mtDNA abundance independent of PM2.5 mass. Mass alone may not fully capture the potential of PM2.5 to oxidize the mitochondrial genome. See video abstract at, http://links.lww.com/EDE/B274.Öğe Correction: Mitochondria and aging in older individuals: An analysis of DNA methylation age metrics, leukocyte telomere length, and mitochondrial DNA copy number in the VA normative aging study [Aging., 12, (2019) (2070-2083)] DOI: 10.18632/aging.102722(Impact Journals LLC, 2020) Dolcini, Jacopo; Wu, Haotian; Nwanaji-Enwerem, Jamaji C.; Kiomourtozlogu, Marianthi-Anna; Cayir, Akin; Sanchez-Guerra, Marco; Vokonas, PantelThe authors requested to correct the last name of Marianthi-Anna Kioumourtzoglou which was misspelled. This mistake does not change the content of publication. © 2020 Dolcini et al.Öğe Impacts of the Mitochondrial Genome on the Relationship of Long-Term Ambient Fine Particle Exposure with Blood DNA Methylation Age(Amer Chemical Soc, 2017) Nwanaji-Enwerem, Jamaji C.; Colicino, Elena; Dai, Lingzhen; Cayir, Akin; Sanchez-Guerra, Marco; Laue, Hannah E.; Nguyen, Vy. T.The mitochondrial genome has long been implicated in age-related disease, but no studies have examined its role in the relationship of long-term fine particle (PM2.5) exposure and DNA methylation age (DNAm-age)-a novel measure of biological age. In this analysis based on 940 observations between 2000 and 2011 from 552 Normative Aging Study participants, we determined the roles of mitochondrial DNA haplogroup variation and mitochondrial genome abundance in the relationship of PM2.5 with DNAm-age. We used the GEOS-chem transport model to estimate address-specific, one-year PM2.5 levels for each participant. DNAm-age and mitochondrial DNA markers were measured from participant blood samples. Nine haplogroups (H, I, J, K, T, U, V, W, and X) were present in the population. In fully adjusted linear mixed-effects models, the association of PM2.5 with DNAm-age (in years) was significantly diminished in carriers of haplogroup V (P-interaction = 0.01; beta = 0.18, 95%CI: -0.41, 0.78) compared to noncarriers (beta = 1.25, 95%CI: 0.58, 1.93). Mediation analysis estimated that decreases in mitochondrial DNA copy number, a measure of mitochondrial genome abundance, mediated 12% of the association of PM2.5 with DNAm-age. Our data suggests that the mitochondrial genome plays a role in DNAm-age relationships particularly in the context of long-term PM2.5 exposure.Öğe Mitochondria and aging in older individuals: an analysis of DNA methylation age metrics, leukocyte telomere length, and mitochondrial DNA copy number in the VA normative aging study(Impact Journals Llc, 2020) Dolcini, Jacopo; Wu, Haotian; Nwanaji-Enwerem, Jamaji C.; Kiomourtozlogu, Marianthi-Anna; Cayir, Akin; Sanchez-Guerra, Marco; Vokonas, PantelPopulation aging is a looming global health challenge. New biological aging metrics based on DNA methylation levels have been developed in addition to traditional aging biomarkers. The prospective relationships of aging biomarkers with mitochondrial changes are still not well understood. Here, we examined the prospective associations of mitochondrial copy number (mtDNAcn) with several aging biomarkers - DNAm-Age, DNAm-PhenoAge, DNAm-GrimAge, and leukocyte telomere length. We analyzed 812 individuals from Veteran Affairs Normative Aging Study (NAS) with available blood samples from 1999-2013. Whole blood mtDNAcn and relative leukocyte telomere length were measured via qPCR. DNA methylation was assessed and used to calculate DNAm-Age, DNAm-GrimAge, and DNAm-PhenoAge. Linear mixed models were used to quantify the associations of mtDNAcn with DNAm-Age, DNAm-GrimAge, DNAm-PhenoAge, and leukocyte telomere length. In multivariable cross-sectional analyses, mtDNAcn is negatively associated with DNAm-Age PhenoAge and DNAm-PhenoAge. In contrast, mtDNAcn is associated with prospective measures of higher DNAm-PhenoAge and shorter leukocyte telomere length. Our study shows that higher mtDNAcn is associated with prospective measures of greater DNAm-PhenoAge and shorter leukocyte telomere length independent of chronological age. This indicates a role for mitochondrial in aging-related disease and mortality, but not the departure of biological age from chronological age.Öğe Mitochondria and aging in older individuals: an analysis of DNA methylation age metrics, leukocyte telomere length, and mitochondrial DNA copy number in the VA normative aging study (vol 12, pg 2070, 2019)(Impact Journals Llc, 2020) Dolcini, Jacopo; Wu, Haotian; Nwanaji-Enwerem, Jamaji C.; Kioumourtzoglou, Marianthi-Anna; Cayir, Akin; Sanchez-Guerra, Marco; Vokonas, Pantel[Anstract Not Available]Öğe Traffic-Related Air Pollution, Blood Pressure, and Adaptive Response of Mitochondrial Abundance(Lippincott Williams & Wilkins, 2016) Zhong, Jia; Cayir, Akin; Trevisi, Letizia; Sanchez-Guerra, Marco; Lin, Xinyi; Peng, Cheng; Bind, Marie-AbeleBackground Exposure to black carbon (BC), a tracer of vehicular-traffic pollution, is associated with increased blood pressure (BP). Identifying biological factors that attenuate BC effects on BP can inform prevention. We evaluated the role of mitochondrial abundance, an adaptive mechanism compensating for cellular-redox imbalance, in the BC-BP relationship. Methods and Results At 1 visits among 675 older men from the Normative Aging Study (observations=1252), we assessed daily BP and ambient BC levels from a stationary monitor. To determine blood mitochondrial abundance, we used whole blood to analyze mitochondrial-to-nuclear DNA ratio (mtDNA/nDNA) using quantitative polymerase chain reaction. Every standard deviation increase in the 28-day BC moving average was associated with 1.97 mm Hg (95% confidence interval [CI], 1.23-2.72; P<0.0001) and 3.46 mm Hg (95% CI, 2.06-4.87; P<0.0001) higher diastolic and systolic BP, respectively. Positive BC-BP associations existed throughout all time windows. BC moving averages (5-day to 28-day) were associated with increased mtDNA/nDNA; every standard deviation increase in 28-day BC moving average was associated with 0.12 standard deviation (95% CI, 0.03-0.20; P=0.007) higher mtDNA/nDNA. High mtDNA/nDNA significantly attenuated the BC-systolic BP association throughout all time windows. The estimated effect of 28-day BC moving average on systolic BP was 1.95-fold larger for individuals at the lowest mtDNA/nDNA quartile midpoint (4.68 mm Hg; 95% CI, 3.03-6.33; P<0.0001), in comparison with the top quartile midpoint (2.40 mm Hg; 95% CI, 0.81-3.99; P=0.003). Conclusions In older adults, short-term to moderate-term ambient BC levels were associated with increased BP and blood mitochondrial abundance. Our findings indicate that increased blood mitochondrial abundance is a compensatory response and attenuates the cardiac effects of BC.