Yazar "Rouquie, Camille" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Characterization of recombinant human lactoferrin N-glycans expressed in the milk of transgenic cows(Public Library Science, 2017) Le Parc, Annabelle; Karav, Sercan; Rouquie, Camille; Maga, Elizabeth A.; Bunyatratchata, Apichaya; Barile, DanielaLactoferrin (LF) is one of the most abundant bioactive glycoproteins in human milk. Glycans attached through N-glycosidic bonds may contribute to Lactoferrin functional activities. In contrast, LF is present in trace amounts in bovine milk. Efforts to increase LF concentration in bovine milk led to alternative approaches using transgenic cows to express human lactoferrin (hLF). This study investigated and compared N-glycans in recombinant human lactoferrin (rhLF), bovine lactoferrin (bLF) and human lactoferrin by Nano-LC-Chip-Q-TOF Mass Spectrometry. The results revealed a high diversity of N-glycan structures, including fucosylated and sialylated complex glycans that may contribute additional bioactivities. rhLF, bLF and hLF had 23, 27 and 18 N-glycans respectively with 8 N-glycan in common overall. rhLF shared 16 N-glycan with bLF and 9 N-glycan with hLF while bLF shared 10 N-glycan with hLF. Based on the relative abundances of N-glycan types, rhLF and hLF appeared to contain mostly neutral complex/ hybrid N-glycans (81% and 52% of the total respectively) whereas bLF was characterized by high mannose glycans (65%). Interestingly, the majority of hLF N-glycans were fucosylated (88%), whereas bLF and rhLF had only 9% and 20% fucosylation, respectively. Overall, this study suggests that rhLF N-glycans share more similarities to bLF than hLF.Öğe Studying Lactoferrin N-Glycosylation(Mdpi, 2017) Karav, Sercan; German, J. Bruce; Rouquie, Camille; Le Parc, Annabelle; Barile, DanielaLactoferrin is a multifunctional glycoprotein found in the milk of most mammals. In addition to its well-known role of binding iron, lactoferrin carries many important biological functions, including the promotion of cell proliferation and differentiation, and as an anti-bacterial, anti-viral, and anti-parasitic protein. These functions differ among lactoferrin homologs in mammals. Although considerable attention has been given to the many functions of lactoferrin, its primary nutritional contribution is presumed to be related to its iron-binding characteristics, whereas the role of glycosylation has been neglected. Given the critical role of glycan binding in many biological processes, the glycan moieties in lactoferrin are likely to contribute significantly to the biological roles of lactoferrin. Despite the high amino acid sequence homology in different lactoferrins (up to 99%), each exhibits a unique glycosylation pattern that may be responsible for heterogeneity of the biological properties of lactoferrins. An important task for the production of biotherapeutics and medical foods containing bioactive glycoproteins is the assessment of the contributions of individual glycans to the observed bioactivities. This review examines how the study of lactoferrin glycosylation patterns can increase our understanding of lactoferrin functionality.