Yazar "Ocak, Mert" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Investigation of the effect of ghrelin on bone fracture healing in rats(Wiley, 2021) Erener, Tamer; Ceritoglu, Kubilay Uğurcan; Aktekin, Cem Nuri; Dalgıç, Ali Deniz; Keskin, Dilek; Geneci, Ferhat; Ocak, Mert; Bilecenoglu, Burak; Hücümenoğlu, Sema; Çaydere, Muzaffer; Senes, Mehmet; Sezgin, ÖzgeGhrelin is known to have effects on proliferation and differentiation of osteoblasts and improvement of bone mineral density in rats. However, no experimental research on ghrelin's effects on fracture healing has been reported. In this context, the effect of ghrelin on the union of femoral shaft fractures was examined in this study by evaluating whether ghrelin will directly contribute to fracture healing. Forty male Wistar-Albino rats were divided into two groups as control and experimental (ghrelin treated) and standard closed shaft fractures were created in the left femurs of all rats. Daily ghrelin injections were applied to the experimental groups and equal numbers of rats were killed after 14 and 28 days following fracture formation. Tissue samples were examined with radiological, biomechanical, biochemical and histological analyses. Densitometry study showed that bone mineral density was improved after 28 days of ghrelin treatment compared to control. On histological examination, at the end of the 14 and 28 days of recovery, significant union was observed in the ghrelin-treated group. The ghrelin-treated group had higher breaking strength and stiffness at the end of 28 days of recovery. Biochemically, ALP levels were found to be higher in the ghrelin-treated group at the end of 28 days of recovery. Results showed that ghrelin directly contributes to fracture healing and it is promising to consider the effect of ghrelin on fracture healing in human studies with pharmacological applications.Öğe Micro-coMputed toMographic assessMent of the influence of light-curing Modes on internal void forMation in bulk-fill coMposites(Termedia Publishing House Ltd., 2024) Yenidünya, Özge Gizem; Misilli, Tuğba; Ocak, MertIntroduction: Polymerization reactions in a new generation bulk-fill composites carried out in a short time with high irradiation, raise concerns about curing processes. With micro-computed tomographic evaluation, it is possible to investigate polymerization shrinkage, and subsequent gap and void formation in dental materials. Objectives: The aim of this study was to evaluate the void formation in bulk-fill composites light-cured with different modes using micro-computed tomography. Material and methods: Class I preparations were made in 25 molars that were randomly divided into subgroups, according to resin composite and curing mode used: Tetric EvoCeram (TEC)*high power mode, TEC*turbo mode, Tetric PowerFill (TPF)*high power mode, TPF*turbo mode, and TPF*3s mode. Each tooth was scanned at two time intervals: pre- and post-cure. Results: After light-curing, a significant increase in the total volume of internal void was noted for both composites cured with high power mode compared with pre-cure. The difference between the sub-groups at post-cure was also significant. While TEC exhibited similar values in terms of different curing modes, turbo and 3s modes caused a significant difference in TPF group, and the lowest void percentage was detected in 3s mode. Conclusions: Internal void formation results from an interplay of different factors, including composition of materials and curing modes. © 2024 Polish Dental Association.