Yazar "Navruz, Fahriye Zemheri" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Alterations in blood parameters, DNA damage, oxidative stress and antioxidant enzymes and immune-related genes expression in Nile tilapia (Oreochromis niloticus) exposed to glyphosate-based herbicide(Elsevier Inc., 2021) Acar, Ümit; İnanan, Burak Evren; Navruz, Fahriye Zemheri; Yılmaz, SevdanIn this study, effects of different concentrations (0, 5, 10, 20, 30, and 40 mg/L) of glyphosate-based herbicide (GBH) on Nile tilapia (Oreochromis niloticus) were investigated after a 14-day of exposure. After determination of LC50 value, effects of GBH on hematological and serum biochemical parameters in blood samples, DNA damage, lipid peroxidation and catalase activity in liver tissues, expression levels of antioxidant enzyme-related genes (SOD, CAT, GPx, and GST) and immune-related genes (TGF-β, TGF-α and IL1-β) were evaluated. The LC50 value has been found as 44.4 mg/L for GBH. GBH exposure at all concentrations caused alterations in blood parameters. GBH induced oxidative stress in liver and DNA damage in blood. Antioxidant enzyme-related genes were significantly up-regulated to suppress oxidative stress. On the other hand, the expression levels of immune-related genes decreased in fish exposure to particularly ≥20 mg/L GBH.Öğe Dose-dependent stress response of esfenvalerate insecticide on common carp (Cyprinus carpio): Evaluating blood parameters and gene expression(Elsevier Science Inc, 2023) Navruz, Fahriye Zemheri; Acar, Umit; Yilmaz, Sevdan; Kesbic, Osman SabriEsfenvalerate is a pyrethroid insecticide used primarily in the agriculture sector for insect management. Esfenvalerate is effective against a wide range of harmful insects, including flies, cockroaches, locusts, and many other types of bugs. It is also known that esfenvalerate has toxic effects on aquatic organisms and poses significant environmental concerns. In this study, the aim is to subchronically examine the effects of sublethal concentrations of esfenvalerate insecticide on common carp (Cyprinus carpio) by assessing changes in blood parameters and resulting gene expression. For this purpose, common carp (Cyprinus carpio) were divided into 5 groups and exposed to 0.025, 0.05, 0.1, and 0.15 & mu;g/L concentrations of esfenvalerate for a period of 14 days. Blood and liver tissue samples were collected from the fish that underwent weight and length measurements. The effects on gene expression levels of immune, antioxidant, and stress-related genes in the liver tissue, including SOD, GST, Cortisol receptor, HSP70, H+-ATPase, Na+/K+-ATPase, Catalase, and GpX, were evaluated, as were the hematological and serum biochemical parameters. Significant decreases were observed in the levels of hematocrit, hemoglobin, erythrocytes, triglycerides and total protein and catalase, H+-ATPase, and GpX gene expression. Glucose, cholesterol, alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase (LDH) and alkaline phosphatase (ALP), SOD, Cortisol receptor, Na+/K+-ATPase gene expression levels increased. As a result, it has been revealed that esfenvalerate insecticide causes oxidative stress in carp at all dose ranges.