Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Kurt, Tugce" seçeneğine göre listele

Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    3D-Printable, Self-Stiffening (4D) and Shape Morphing Hydrogel through Single-Step Orthogonal Crosslinking of Phenolic Biopolymers for Dynamic Tissue Engineering
    (Wiley, 2025) Gungor, Nuriye Nazet; Kurt, Tugce; Sari, Buse; Isik, Melis; Okesola, Babatunde O.; Arslan, Yavuz Emre; Derkus, Burak
    Particularly for dynamic, shape-changing, or fibrillar tissues such as muscles and blood vessels, the development of innovative biomaterials is crucial for advancing tissue engineering and regenerative medicine. This study introduces a novel multicomponent hydrogel created from silk fibroin (SF), tyramine-modified hyaluronic acid (HA_Tyr), and tyramine-modified gelatin (G_Tyr). Using an enzymatic orthogonal covalent bonding between phenolic groups, i.e., tyrosine and tyramine moieties of SF, HA_Tyr, and G_Tyr, a dynamically stiffening SF/HA_Tyr/G_Tyr (SHG) multicomponent hydrogel is achieved with enhanced mechanical properties. Utilizing an extrusion-based 3D printing approach, the precise fabrication of constructs with tailored geometries and functionalities is demonstrated. The emerging 3D-printed hydrogels undergo morphologic changes (4D) under 37 degrees C/phosphate buffer saline (PBS) conditions. The observed morphological change results from the conformational change and folding of SF leading to fibrillation. These multicomponent hydrogels also show significant promise in creating bio-instructive materials that meet the mechanical and functional requirements necessary for in situ tissue engineering. The study highlights the potential of these self-stiffening biomaterials to recover dynamic and fibrillar tissues, supported by both in vitro and pre-clinical chorioallantoic membrane (CAM) model evaluations that underscore their biocompatibility and pro-angiogenic properties.
  • [ X ]
    Öğe
    COVID-19 Tedavisinde Mezenkimal Kök Hücrelerin Potansiyel Kullanımı Üzerine Kapsamlı Bir İnceleme
    (Türkiye Sağlık Enstitüleri Başkanlığı, 2021) Kurt, Tugce; Sevinc, Isa; Uysal, Feyza; Demiray, Elif; Yılmaz, Hilal; Arslan, Yavuz Emre
    İlk olarak Çin’in Wuhan kentinde tespit edildiği düşünülen yeni tip koronavirüs (SARS-CoV-2), raporlandığı ilk vakadan bu yana kısa süre içinde tüm dünyayı etkisi altına alarak bir salgına dönüşmüştür. Virüs, COVID-19 adı verilen bulaşıcı bir hastalığa neden olarak 150 milyondan fazla kişiyi etkilemiştir. Ayrıca yoğun virüs yükü ile enfekte olmuş bireylerde oluşan sitokin fırtınasının hastalarda akut solunum yolu bozukluğu (ARDS), pulmoner fibrozis ve hatta çoklu organ yetmezliği gibi durumlara neden olabildiği görülmüştür. Yapılan in vitro ve preklinik çalışmalarda mezenkimal kök hücrelerin (MKH) rejeneratif özelliklerinin yanında anti-enflamatuar ve immünmodülatör etkilerinin olduğu belirlenmiştir. Bu nedenle bilim insanları, rejeneratif bir umut olarak COVID-19 tedavisinde konvansiyonel ilaç veya plazma temelli tedavilere alternatif olarak MKH’leri kullanmayı önermektedir. Böylece hastalarda yoğun ilaç kullanımına bağlı yan etkilerin görülmeden MKH terapisi ile immünmodülasyon ve anti-enflamatuar etkilerin sağlanabileceği ve ARDS, pulmoner fibrosiz, sepsis ve çoklu organ yetmezliği gibi olumsuz senaryoların önüne geçileceği düşünülmektedir. Ayrıca MKH'lerin rejenerasyon özelliği sayesinde hasarlı doku tamirinin de sağlanabileceği öngörülmektedir. Ancak klinik uygulamalardaki tedavinin başarısı ve hasta güvenliği için yapılacak detaylı çalışmalarla COVID-19 tedavisi için MKH uygulamalarının standardize edilmesi gerekmektedir. Bu derlemede temel olarak COVID-19 tedavisi için yapılan MKH uygulamaları incelenmiştir. Metin içerisinde sırasıyla SARS-CoV-2 ve COVID-19 hastalığı kısaca açıklandıktan sonra yapılan aşı çalışmaları ile enfeksiyon sonrası uygulanan terapiler özetlenerek COVID-19 tedavisi için geliştirilen ve umut vaat eden MKH uygulamaları, MKH'lerin tedavideki rolü, hareket mekanizması, uygulama güvenliği ve etik konusu tartışılmıştır.
  • [ X ]
    Öğe
    Decellularized tumor matrices as biomimetic cancer niche: a new perspective on cancer research and therapy
    (Iop Publishing Ltd, 2025) Ozudogru, Eren; Kurt, Tugce; Arslan, Yavuz Emre
    Cancer is among the major causes of mortality, responsible for approximately 15% of all deaths worldwide. Despite remarkable progress in modern medicine, it remains a significant global health challenge. Nevertheless, conventional therapies such as chemotherapy and radiotherapy target healthy and malignant tissues, leading to adverse side effects, including hair loss, fatigue, and nausea, which significantly reduce patients' quality of life. Even more critically, the therapeutic response varies from patient to patient, which reduces the effectiveness of treatment. Therefore, cancer tissue engineering has evolved as a novel interdisciplinary field, aiming to develop structures that mimic the tumor microenvironment to elucidate cancer development mechanisms and devise effective treatment methods. However, producing a fully synthetic biosimilar matrix by assembling all individual ECM components remains unfeasible due to the heterogeneity and complex structure of tumor tissues, as well as the necessity of highly advanced micro- and nanoengineering techniques. Consequently, decellularization techniques have recently been applied to cancer tissues to produce biomimetic tumor models. In this review, we provided a comprehensive overview of the extracellular matrix (ECM) architecture and its role in tumor progression. We also discussed the structural differences between normal and malignant tissues. We briefly reviewed decellularization techniques and analytical approaches for ECM characterization. Emphasizing the cutting-edge research, we categorized developments into three groups: decellularized tumor-derived ECM (dT-ECM), hydrogels, and bioinks. Subsequently, we critically assessed the benefits, limitations, and potential future developments of dT-ECM-based strategies. Finally, we envision that tumor tissue engineering will provide preventive treatment approaches by developing patient-specific predictive and personalized cancer models through integrating advanced biomaterials with artificial intelligence and machine learning.

| Çanakkale Onsekiz Mart Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Çanakkale Onsekiz Mart Üniversitesi, Çanakkale, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2026 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim