Yazar "Kockar, Feray" seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Prodrugs for nitroreductase based cancer therapy-4: Towards prostate cancer targeting: Synthesis of N-heterocyclic nitro prodrugs, Ssap-NtrB enzymatic activation and anticancer evaluation(Academic Press Inc Elsevier Science, 2020) Gungor, Tugba; Tokay, Esra; Gulhan, Unzile Guven; Hacioglu, Nelin; Celik, Ayhan; Kockar, Feray; Ay, MehmetIn this study, various N-heterocyclic nitro prodrugs (NHN1-16) containing pyrimidine, triazine and piperazine rings were designed and synthesized. The final compounds were identified using FT-IR, H-1 NMR, C-13 NMR as well as elemental analyses. Enzymatic activities of compounds were conducted by using HPLC analysis to investigate the interaction of substrates with Ssap-NtrB nitroreductase enzyme. MTT assay was performed to evaluate the toxic effect of compounds against Hep3B and PC3 cancer cell lines and healthy HUVEC cell. It was observed that synthesized compounds NHN1-16 exhibited different cytotoxic profiles. Pyrimidine derivative NHN3 and triazine derivative NHN5 can be good drug candidates for prostate cancer with IC50 values of 54.75 mu M and 48.9 mu M, respectively. Compounds NHN6, NHN10, NHN12, NHN14 and NHN16 were selected as prodrug candidates because of non-toxic properties against three different cell models. The NHN prodrugs and Ssap-NtrB combinations were applied to SRB assay to reveal the prodrug capabilities of these selected compounds. SRB screening results showed that the metabolites of all selected non-toxic compounds showed remarkable cytotoxicity with IC50 values in the range of 1.71-4.72 nM on prostate cancer. Among the tested compounds, especially piperazine derivatives NHN12 and NHN14 showed significant toxic effect with IC50 values of 1.75 nM and 1.79 nM against PC3 cell compared with standart prodrug CB1954 (IC50: 1.71 nM). Novel compounds NHN12 and NHN14 can be considered as promising prodrug candidates for nitroreductase-prodrug based prostate cancer therapy.Öğe Selagibenzophenone B and Its Derivatives: SelB-1, a Dual Topoisomerase I/II Inhibitor Identified through In Vitro and In Silico Analyses(Amer Chemical Soc, 2024) Donmez, Serhat; Lapinskaite, Ringaile; Atalay, Hazal Nazlican; Tokay, Esra; Kockar, Feray; Rycek, Lukas; Ozbil, MehmetThe development of multitargeted drugs represents an innovative approach to cancer treatment, aiming to enhance drug effectiveness while minimizing side effects. Herein, we sought to elucidate the inhibitory effect of selagibenzophenone B derivatives on the survival of cancer cells and dual topoisomerase I/II enzyme activity. Results demonstrated that among the compounds, SelB-1 selectively inhibited the proliferation and migration of prostate cancer cells while exhibiting minimal effects on healthy cells. Furthermore, SelB-1 showed a dual inhibitory effect on topoisomerases. Computational analyses mirrored the results from enzyme inhibition assays, demonstrating the compound's strong binding affinity to the catalytic sites of the topoisomerases. To our surprise, SelB-1 did not induce apoptosis in prostate cancer cells; instead, it induced autophagic gene expression and lipid peroxidation while reducing GSH levels, which might be associated with ferroptotic death mechanisms. To summarize, the findings suggest that SelB-1 possesses the potential to serve as a dual topoisomerase inhibitor and can be further developed as a promising candidate for prostate cancer treatment.Öğe Strigolactone Analogs: Two New Potential Bioactiphores for Glioblastoma(Amer Chemical Soc, 2022) Antika, Gizem; Cinar, Zeynep Ozlem; Secen, Esma; Ozbil, Mehmet; Tokay, Esra; Kockar, Feray; Prandi, CristinaStrigolactones (SLs), carotenoid-derived phytohormones, control the plant response and signaling pathways for stressful conditions. In addition, they impact numerous cellular processes in mammalians and present new scaffolds for various biomedical applications. Recent studies demonstrated that SLs possess potent antitumor activity against several cancer cells. Herein, we sought to elucidate the inhibitory effects of SL analogs on the growth and survival of human brain tumor cell lines. Among four tested SLs, we showed for the first time that two lead bioactiphores, indanone-derived SL and EGO10, can inhibit cancer cell proliferation, induce apoptosis, and induce G1 cell cycle arrest at low concentrations. SL analogs were marked by increased expression of Bax/Caspase-3 genes and downregulation of Bcl-2. In silico studies were conducted to identify drug-likeness, blood-brain barrier penetrating properties, and molecular docking with Bcl-2 protein. Taken together, this study indicates that SLs may be promising antiglioma agents, presenting novel pharmacophores for further preclinical and clinical assessment.Öğe Synthesis and biological evaluation of 2,4,6-trinitroaniline derivatives as potent antitumor agents(Springer Wien, 2020) Hacioglu, Nelin; Gungor, Tugba; Tokay, Esra; Onder, Ferah Comert; Ay, Mehmet; Kockar, FerayNitro group-containing compounds are well known as effective anticancer drugs. The aim of the study is to synthesize a series of trinitroaniline derivatives to determine their potential antitumor activities on diverse cancer cell models, anti-apoptotic and anti-metastatic features on hepatoma cells. The anti-proliferative studies show that IC(50)values ofN-phenyl-2,4,6-trinitroaniline,N-(2,4,6-trinitrophenyl)naphthalen-1-amine,N-(2,4,6-trinitrophenyl)naphthalen-2-amine,N-(3-nitrophenyl)-2,4,6-trinitroaniline were similar to IC(50)value of cisplatin in Hep3B cells. In fact, IC(50)value ofN-(3,5-difluorophenyl)-2,4,6-trinitroaniline is better than cisplatin. In addition, all compounds could decrease the expression of the cell cycle checkpoint protein cyclin D1. To investigate the effect of compounds on the apoptotic pathway, mRNA and protein expressions of Bcl-2 and Bax were analyzed with qRT-PCR and Western blot. Annexin V staining assay, apoptotic mRNA and protein analysis indicate thatN-isopropyl-2,4,6-trinitroaniline,N-(2,4,6-trinitrophenyl)-5-methylisoxazole-3-amine,N-(3-nitrophenyl)-2,4,6-trinitroaniline,N-(4-nitrophenyl)-2,4,6-trinitroaniline induce intrinsic apoptosis by increasing the ratio of Bax/Bcl-2 expression. In addition, colony formation and wound healing assays confirmed that these compounds also inhibit the metastatic activity of Hep3B cells. 2,4,6-Trinitroaniline derivatives, especiallyN-(3-nitrophenyl)-2,4,6-trinitroaniline might be used as candidate for the development of new antitumor drugs.