Yazar "Kaya, Tolga" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Detection of relative [Na+] and [K+] levels in sweat with optical measurements(Amer Inst Physics, 2014) Al-Omari, Mahmoud; Sel, Kivanc; Mueller, Anja; Edwards, Jeffery; Kaya, TolgaWe describe the use of 2-hydroxy-1,4-naphthoquinone (HNQ, Lawsone) as a potential sweat electrolyte measurement marker. We use ultraviolet-visible absorbance measurements to determine the absorbance energy in a particular wavelength range (400 nm-500 nm). This novel approach allows us to eliminate the importance of the exact wavelength of the absorbance peak but find the integral of the range of interest. Although we numerically calculate the absorbance energy, it is imperative to use photodiodes to measure the intensity of the transmitted light that is fabricated particularly for the range of interest for future device implementations. We explored various mixing ratios of water and acetone to find the optimum solvent that would give the most sensitive and accurate relative electrolyte sensing. The pH value was also modified to see the effect on the absorbance energy and intensity. A representative group of subjects were used to collect sweat from the dehydration and hyperhydration cases. The results are convincing that HNQ solutions can be used as a wearable, continuous sweat sensor. (C) 2014 AIP Publishing LLC.Öğe The effect of Na+ and K+ doping on the properties of sol-gel deposited 2-hydroxy-1,4-naphthoquinone thin films(Amer Inst Physics, 2013) Al-Omari, Mahmoud; Sel, Kivanc; Mueller, Anja; Mellinger, Axel; Kaya, TolgaWe describe the use of 2-hydroxy-1,4-naphthoquinone (HNQ) thin films as a potential water vapor and electrolyte sensing material towards the goal of non-invasive relative humidity and sweat detection. We have successfully made HNQ sol-gel thin films and studied the effects of sodium and potassium ions on their optical and electrical characteristics. Ultraviolet-visible absorbance and Fourier transform infrared spectroscopy measurements along with scanning electron microscopy demonstrated that we were able to dope HNQ thin films with Na+ and K+ ions, which are the main electrolyte contents in sweat. While the conductivity of thin films increased by at least an order of magnitude, energy band gaps decreased by doping HNQ with Na+ and K+ ions. Relative humidity test results showed that HNQ-based thin-films can be used as a sensing material for water vapor. Room temperature current-voltage measurements were also performed to determine the surface conductivity. (C) 2013 AIP Publishing LLC.