Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Kabakci, Elif" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    Multi-walled carbon nanotube grafted 3D spacer multi-scale composites for electromagnetic interference shielding
    (Wiley, 2022) Yildirim, Ferhat; Kabakci, Elif; Sas, Hatice S.; Eskizeybek, Volkan
    The development of structural fiber reinforced polymer composites with various additional functionalities is becoming a hot research area to achieve the application of multi-functional composites in the aerospace and automotive industries. An innovative material solution is 3D spacer composites with distinctive anisotropic structural characteristics. Herein, we report the manufacturing of multi-walled carbon nanotubes (MWCNTs) grafted of 3D spacer glass/epoxy multi-scale composites and their electromagnetic interference shielding efficiencies (EMSE). To manufacture multi-scale composites, we utilized dip coating, vacuum filtering, and vacuum infusion methods to introduce MWCNTs of the woven fabric, while we also modified the epoxy resin with MWCNTs to increase electrical conductivity of intrinsic insulator epoxy resin. Owing to the rectangular-shaped channel structure, which is beneficial for multiple reflection and scattering between top and bottom face sheets, the resultant 3D spacer multi-scale composite represented a good EMSE performance of -18.3 dB in the frequency range of 8.2-12.4 GHz with an increase of 107% comparing the corresponding neat composite counterpart. Moreover, we measured the in-plane conductivity as 1.89E-2 S/m after MWCNTs grafting, while the out-of-plane conductivity remained three times lower than the in-plane conductivity. Dynamic mechanical analysis revealed that the storage modulus increased almost three times with the MWCNTs grafting, while glass transition temperature shifted to higher temperatures (from 77.5 to 89.7 degrees C). Therefore, we anticipate that our study will expand the use of 3D spacer composites in the aviation and automotive industries.
  • [ X ]
    Öğe
    Reformulation of bone china body for the reduction of pyroplastic deformation
    (Wiley, 2022) Kabakci, Elif; Capoglu, Ahmet
    This work is aimed to decrease the pyroplastic deformation using sodium feldspar and potassium feldspar in bone china revealing the viscosity and crystalline phase effect. For this, we reformulated the traditional bone china recipe considering the amount and ratio of fluxing agents. In the first group, sodium feldspar (coded as Na-F) and potassium feldspar (coded as K-F) were introduced individually into the body from 20 to 35 wt.%. In the second group, we fixed the feldspar amount to 35 wt.% but changed the Na-F/K-F ratio to 1/3-1/2-1/1-2/1-3/1. Optical dilatometry measurements revealed that K-feldspar reduced the sintering temperature by about 50 degrees C compared to Na-feldspar. Densified 35% K-F and 35% Na-F bodies showed very low pyroplastic index (PI) such as 5.36 x 10(-6) cm(-1) (at 1150 degrees C) and 7.46 x 10(-6) cm(-1) (at 1200 degrees C), respectively, whereas Na-F/K-F 1/3 sample exhibited the lowest PI (3.58 x 10(-6) cm(-1)) at very low sintering temperature (at 1150 degrees C). Microstructural analysis showed that the dissolution of residual quartz grains and the homogeneity of the distribution of the crystal phases support decrease in pyroplastic deformation.

| Çanakkale Onsekiz Mart Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Çanakkale Onsekiz Mart Üniversitesi, Çanakkale, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim