Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Haritash, Anil Kumar" seçeneğine göre listele

Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    Electrokinetic remediation: Past experiences and future roadmap for sustainable remediation of metal-contaminated soils
    (Elsevier, 2024) Taneja, Sonam; Karaca, Oznur; Haritash, Anil Kumar
    Soil pollution due to heavy metals has become a serious environmental concern in the past decade, adversely affecting soil conditions and global food security. Due to this, considerable attention has been given to developing suitable remediation technologies, particularly for heavy metals. Among them, Electrokinetic Remediation (EKR) is a promising developing technique due to its great efficiency for fine-grained soils. The use of an electric field to remove contaminants from soil is effective on a wide range of matrices irrespective of the heterogeneity. In this context, the present study provides a detailed discussion on the design and operational considerations of EKR, mainly, power, electrode, and electrolyte characteristics. The major limitations of EKR, innovative modifications of EKR operations to overcome the limitations, and EKR-integrated technologies have been addressed. The optimization of regulating parameters ensures maximum efficiency towards removal of contaminants at minimum cost of treatment, thus, highlighting the engineering aspect of electrokinetics at field scale. The sustainability concerns arising from EKR and its possible alternative solutions have been discussed, to provide useful information and prospects to researchers in the field.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Technological Optimization, Health Risk Reduction, and Economic Analysis of Electrokinetic Remediation of Cadmium-contaminated Soil
    (Springer Int Publ Ag, 2025) Taneja, Sonam; Karaca, Öznur; Haritash, Anil Kumar
    The electrokinetic remediation (EKR) technique was employed for cadmium (Cd)-contaminated soil to study the cross-effect of voltage gradient and electrolyte concentration on removal efficiency. Response Surface Methodology over Central Composite Design (CCD) was used to design the experiments. In addition, the effect of electrode material on EKR was investigated using two different electrodes, graphite, and stainless steel. The distribution and migration behavior of Cd in soil was explored through chemical speciation and sequential extraction procedure. The findings revealed that the voltage gradient and EDTA concentration were positively correlated with the removal efficiency at the optimized conditions of 2.5 V/cm and 0.15 M EDTA to achieve 27.8% removal in 10 h. The voltage gradient had a more profound effect on the removal efficiency as compared to EDTA concentration. The EKR treatment effectively reduced the bioavailability of Cd by removing water-soluble and exchangeable fractions and rendering the transformation of Cd to reducible and residual fractions. The Human Health Risk Assessment study was performed which revealed that EKR was successful in reducing the non-carcinogenic adverse effects by 29% and total carcinogenic risks from one in a thousand to one in a hundred thousand in adults, while children still exposed to high potential non-carcinogenic effects. The economic evaluation of all experiments concluded that the stainless steel electrode was more suited for Cd removal as compared to the graphite electrode with better removal (30%) and low specific cost (5.8 US$/g Cd). The study shows that EKR is successful in reducing the overall toxicity of Cd in soil and humans at a relatively low cost and less treatment time.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Treatment of Pb-contaminated soil by electrokinetics: Enhancements by varying voltage, chelant, and electrode material
    (Elsevier B.V., 2023) Taneja, Sonam; Karaca, Öznur; Haritash, Anil Kumar
    This work examines the removal of lead (Pb) from artificially contaminated soils (1000 mg/kg Pb) using the Electrokinetic Remediation (EKR) technique. Operating parameters, including periodic voltage gradient, electrolyte amendments with ethylenediaminetetraacetic acid (EDTA) and a non-ionic surfactant (Tween 80), and type of electrode material were investigated. Results indicated that a high voltage gradient (2.5 V/cm), in conjunction with EDTA as electrolyte, and stainless-steel electrodes favored the overall removal process. Pb removal by selected electrolytes was in order EDTA (65 %) > Distilled water (64.1 %) > Tween 80 (6.2 %). Visual Minteq v.3.1 software was employed to predict the chemical equilibrium of different chemical species of Pb against pH. Results confirmed that when EDTA was used as an electrolyte, the [Pb-EDTA]2− complex predominated over the Pb(OH)2 complex at an alkaline pH, resulting in more removal. Findings suggested that stainless steel was a better alternative to graphite with respect to removal efficiency and corrosion effect at the anode. Considering the maximum Pb removal with EDTA at higher voltage, the energy consumption was also maximum (78.3KWh/m3). Nevertheless, the economic evaluation suggested that the cost per gram removal of Pb was lowest in this experiment (8 US$/g Pb) and, thus, can be considered for practical applications to treat the Pb-contaminated soils.

| Çanakkale Onsekiz Mart Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Çanakkale Onsekiz Mart Üniversitesi, Çanakkale, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim