Yazar "Hadzima-Nyarko, Marijana" seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A Comparative Study of the Effects of Earthquakes in Different Countries on Target Displacement in Mid-Rise Regular RC Structures(Mdpi, 2022) Isik, Ercan; Hadzima-Nyarko, Marijana; Bilgin, Huseyin; Ademovic, Naida; Buyuksarac, Aydin; Harirchian, Ehsan; Bulajic, BorkoData from past earthquakes is an important tool to reveal the impact of future earthquakes on engineering structures, especially in earthquake-prone regions. These data are important indicators for revealing the seismic loading effects that structures will be exposed to in future earthquakes. Five different earthquakes from six countries with high seismic risk were selected and were within the scope of this study. The measured peak ground acceleration (PGA) for each earthquake was compared with the suggested PGA for the respective region. Structural analyzes were performed for a reinforced-concrete (RC) building model with four different variables, including the number of storeys, local soil types, building importance class and concrete class. Target displacements specified in the Eurocode-8 were obtained for both the suggested and measured PGA values for each earthquake. The main goal of this study is to reveal whether the proposed and measured PGA values are adequately represented in different countries. We tried to reveal whether the seismic risk was taken into account at a sufficient level. In addition, target displacements have been obtained separately in order to demonstrate whether the measured and suggested PGA values for these countries are adequately represented in structural analysis and evaluations. It was concluded that both seismic risk and target displacements were adequately represented for some earthquakes, while not adequately represented for others. Comments were made about the existing building stock of the countries considering the obtained results.Öğe Comparison of Seismic and Structural Parameters of Settlements in the East Anatolian Fault Zone in Light of the 6 February Kahramanmaraş Earthquakes(Mdpi, 2024) Işık, Ercan; Hadzima-Nyarko, Marijana; Avcıl, Fatih; Büyüksaraç, Aydın; Arkan, Enes; Alkan, Hamdi; Harirchian, EhsanOn 6 February 2023, two very large destructive earthquakes occurred in the East Anatolian Fault Zone (EAFZ), one of Türkiye's primary tectonic members. The fact that these earthquakes occurred on the same day and in the same region increased the extent of the destruction. Within the scope of this study, twenty different settlements affected by earthquakes and located directly on the EAFZ were taken into consideration. Significant destruction and structural failure at different levels were induced in reinforced concrete (RC) structures, the dominant urban building stock in these regions. To determine whether the earthquake hazard is adequately represented, the PGA values predicted in the last two earthquake hazard maps used in Türkiye for these settlements were compared with the measured PGAs from actual earthquakes. Subsequently, the damage to reinforced concrete structures in these settlements was evaluated within the scope of construction and earthquake engineering. In the final part of the study, static pushover analyses were performed on a selected example of a reinforced concrete building model, and target displacement values for different performance levels were determined separately for each earthquake. For the 20 different settlements considered, the displacements were also derived based on the values predicted in the last two earthquake hazard maps, and comparisons were made. While the target displacements were exceeded in some settlements, there was no exceedance in the other settlements. The realistic presentation of earthquake hazards will enable the mentioned displacements predicted for different performance levels of structures to be determined in a much more realistic manner. As a result, the performance grades predicted for the structures will be estimated more accurately.Öğe Failures in Reinforced-Concrete Columns and Proposals for Reinforcement Solutions: Insights from the 2023 Kahramanmaraş Earthquakes(MDPI, 2025) Işık, Ercan; Radu, Dorin; Harirchian, Ehsan; Avcıl, Fatih; Arkan, Enes; Büyüksaraç, Aydın; Hadzima-Nyarko, MarijanaTürkiye, a country that suffers significant structural damage from earthquakes, was struck by two major quakes on 6 February 2023, centered in Pazarcık (Mw = 7.7) and Elbistan (Mw = 7.6) in Kahramanmaraş. These earthquakes caused extensive damage and destruction to urban concrete structures, significantly contributing to the loss of life. Inadequate designs in columns, which are meant to maintain structural integrity and transfer forces, were a primary cause of the structural damage. This study provides information about these catastrophic earthquakes, focusing on the detailed examination of damages in reinforced-concrete (RC) columns. Structural analyses were conducted on a selected RC building, taking into account the primary causes of column damage: low-strength concrete and insufficient transverse reinforcement. Five different concrete classes and two transverse reinforcement spacing options were considered to analyze the impact of concrete strength. To address the exceeded shear forces in the columns, a fiber-reinforced polymer (FRP) wrapping method was employed for strengthening. Initially, a reinforcement analysis was performed on a single column that exceeded shear force limits, followed by strengthening applications on all columns exceeding the limit shear force. The results demonstrated that carbon fibers have a significant impact on the shear forces in columns. The conclusion of the research is that FRP increases the ductility of concrete columns, enabling them to withstand seismic forces more effectively. This is vital in ensuring the integrity of structures in earthquake-prone areas. Using FRP materials can also significantly reduce the carbon footprint associated with concrete construction by minimizing the need for maintenance and extending the lifespan of structures. FRP presents a sustainable and effective solution for addressing failures in reinforced concrete columns. Its unique properties not only enhance strength and durability but also significantly improve the resilience of structures against corrosion, seismic events, and overload conditions.Öğe Seismic Performance and Failure Mechanisms of Reinforced Concrete Structures Subject to the Earthquakes in Türkiye(Mdpi, 2024) Işık, Ercan; Avcıl, Fatih; Hadzima-Nyarko, Marijana; Izol, Rabia; Büyüksaraç, Aydın; Arkan, Enes; Radu, DorinMany reinforced-concrete structures collapsed or were seriously damaged in the 7.7 and 7.6 magnitude earthquakes that occurred in southern T & uuml;rkiye on 6 February 2023. The recorded peak ground accelerations were quite high (2.2 g) and the recorded motions' elastic acceleration response spectra were significantly greater than the elastic design spectra given by the most recent Turkish seismic design code. A total of 518,000 houses were heavily damaged or collapsed in the eleven cities affected by the earthquake. More than 53,000 people lost their lives and over 100,000 people were injured, the majority of these injurits caused by the collapse of reinforced concrete structures. Post-earthquake damage assessments are important in the context of applying sustainability principles to building design and construction. In this study, post-earthquake damage assesments and evaluations were made for the reinforced-concrete structures that were exposed to destruction or various structural damage in Hatay, Kahramanmara & scedil; and Ad & imath;yaman, which where most affected after the Kahramanmara & scedil; earthquakes. The RC building damage and failure mechanisms resulting from field observations were evaluated in detail from a broad performance-based structural and earthquake engineering perspective. Information about Kahramanmara & scedil; earthquakes is given briefly. Design spectra and spectral accelerations were compared for the earthquake stations in these three provinces. Soft/weak story, short column, insufficiently reinforced-concrete, and poor workmanship are the primary causes of structural damage, which cause earthquake weaknesses in these buildings.











